Skip to main content
Log in

Future directions in photochemical air quality modeling

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Photochemical air quality models provide the most defensible method for relating future air quality to changes in emission, and hence are the foundation for determining the effectiveness of proposed control strategies. However, strategies, based primarily on controlling reactive organic gas emissions, have not provided the expected benefits. This raises the question of what have been the deficiencies in previous studies utilizing these tools? Furthermore, what changes are necessary, and desired, to improve upon past efforts? The current generation of models have matured within their original frameworks to represent, relatively accurately, the important physical and chemical processes affecting pollutant dynamics in urban atmospheres. The ability to follow regional dynamics is less well demonstrated. Current regional models have a single horizontal resolution scale. Multiscale models will enable detailed treatment of urban chemistry, and also effectively follow long range transport and chemistry. Improved computational capabilities will allow more detailed chemistry and heterogeneous processes to be followed within the models. The practice of photochemical modeling will benefit greatly from recent and future intensive field studies. The advancements in both the model framework and practice will allow much more accurate evaluation of proposed control strategies, and lead to a much improved understanding of pollutant dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carter, W. P. L., Lurmann, F. W., Atkinson, R., and Lloyd, A. C.: 1986, ‘Development and Testing of a Surrogate Species Chemical Reaction Mechanism’, EPA Contract No. 68-02-4104, Statewide Air Polution Research Center, Riverside, CA.

    Google Scholar 

  • Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J.: 1987, J. Geophys. Res. 92, 14861.

    Google Scholar 

  • Cho, S-Y, Carmichael, G. R., and Rabitz, H.: 1988, Atmos. Environ. 21, 2589.

    Google Scholar 

  • Chock, D. P.: 1991, (in press).

  • Chock, D. P. and Dunker, A. M.: 1983, Atmos. Environ. 17, 11.

    Google Scholar 

  • Dodge, M. C.: 1989, J. Geophys. Res. 94, 5121.

    Google Scholar 

  • Dunker, A. M.: 1981, ‘Efficient Calculation of Sensitivity Coefficients for Complex Atmospheric Models’, Atmos. Environ. 15, 1155–1161.

    Google Scholar 

  • Gery, M. W., Whitten, G. Z., and Killus, J. P.: 1989, ‘Development and testing of the CBM-IV for Urban and Regional Modeling’, EPA Contract No. 68-02-4136, Systems Applications Inc., San Rafael, CA.

    Google Scholar 

  • Hov, Ø, Zlatev, Z., Berkowitcz R., Eliassen, A., and Prahm, L. P.: 1989, Atmos. Environ. 23, 967.

    Google Scholar 

  • Lamb, R. G.: 1983, ‘A Regional Scale (1000 km) Model of Photochemical Air Pollution: Part 1. Theoretical Formulation’, EPA-600/3-83-035, U.S. Environmental Protection Agency, Research Triangle Park, N.C.

    Google Scholar 

  • Lawson, D. R.: 1990, JAWMA 40, 156.

    Google Scholar 

  • Lurmann, F. W., Carter, W. P. L., and Coyner, L. A.: 1987, ‘A Surrogate Species Chemical Reaction Mechanism for Urban-scale Air Quality Simulation Models’, EPA Contract No. 68-02-4104.

  • McRae, G. J., Goodin, W. R., and Seinfeld, J. M.: 1982, J. Comput. Phys. 45, 1–42.

    Google Scholar 

  • McRae, G. J., Goodin, W. R., and Seinfeld, J. M.: 1982, ‘Mathematical Modeling of Photochemical Air Polution’, EQL Report No. 18, Environmetal Quality Laboratory, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  • Milford, J. B., Russell, A. G., and McRae, J. G.: 1989, Environ. Sci. Technol 23, 1290.

    Google Scholar 

  • Milford, J. B., Russell, A. G., and McRae, J. G.: 1991 (submitted).

  • Milford, J. B.: 1988, ‘Photochemical Air Pollution Control Strategy Development’, Ph. D. Thesis, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Morris, R. E., Myers, T. C., Causley, M. C., Gardner, L., and Carr, E. L.: 1989, ‘Urban Airshed Model Study of Five Cities: Low-cost Application of the Model to Atlanta and Evaluation of the Effect of Biogenic Emission Control Strategies’, report to the U.S. Environmental Protection Agency, Systems Applications, Inc., San Rafael, California, (SYSAPP-89/117).

    Google Scholar 

  • Odman, M. T. and Russell, A. G.: 1991a, Atmos. Environ. (in press).

  • Odman, M. T. and Russell, A. G.: 1991b, J. Geophys. Res. 96, 7363.

    Google Scholar 

  • Pierson, Gertler, A. W., and Bradow, R. L.: 1990, JAWMA 40, 1475.

    Google Scholar 

  • Pilinis, C. and Seinfeld, J. H.: 1988, Atmos. Environ. 22, 1985.

    Google Scholar 

  • Possiel, N. and Cox, W. M.: 1991, Water, Air, and Soil Pollut. 00, 000–000.

    Google Scholar 

  • Rao, S. T. and Sistla, G.: 1991, Water, Air, and Soil Pollut. 00, 000–000.

    Google Scholar 

  • Russell, A. G., McCue, K. F., and Cass, G. R.: 1988, Environ. Sci. Technol, 22, 263.

    Google Scholar 

  • Russell, A. G. and Cass, G. R.: 1986, Atmos. Environ. 20, 2011.

    Google Scholar 

  • Russell, A. G., McRae, G. J., and Cass, G. R.: 1983, Aerosol Science and Technology 2, 179.

    Google Scholar 

  • Schere, K. L., Wayland, R. A. (1989), ‘EPA Regional Oxidant Model (ROM2.0): Evaluation on 1980 NEROS Data Bases’, U.S. Environmental Protection Agency Report No. EPA /600/3-89/057, Research Triangle Park, N.C.

  • Shieh, D., Chang, Y., and Carmichael, G., R.: 1988, Env. Software 3, 28.

    Google Scholar 

  • Stockwell, W. R. and Tang, X.: 1987, Paper No. 87-72.1, Annual Meeting of Air Pollution Control Association, New York, NY.

  • Tilden, J. W., Seinfeld, J. H.: 1982, Atmos. Environ. 16, 1357.

    Google Scholar 

  • Whitten, G. Z. and Gery, M.-W.: 1986, ‘Development of CBM-X Mechanisms for Urban and Regional AQSMS’, EPA Contract No. 68-02-3738, Systems Applications Inc., San Rafael, CA.

    Google Scholar 

  • Whitten, G. Z., Killus, J. P., and Johnson, R. G.: 1985, ‘Modeling of Auto Exhaust Smog Chamber Data for EKMA Development’, EPA Contract No. 68-02-3735, Systems Applications Inc., San Rafael, CA.

    Google Scholar 

  • Yamartino, R. J., Scire, J. S., Hanna, S. R., Carmichael, G. R., and Chang, Y. S.: 1989, ‘CALGRID: a Mesoscale Photochemical Grid Model’, California Air Resources Board Report No. A049-1, Sacramento, California.

  • Young, T. R. and Boris, J. P.: 1977, J. Phys. Chem. 81, 2424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, A., Odman, M.T. Future directions in photochemical air quality modeling. Water Air Soil Pollut 67, 181–193 (1993). https://doi.org/10.1007/BF00480820

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00480820

Keywords

Navigation