Skip to main content
Log in

Peroxicoagulation and Solar Peroxicoagulation for Landfill Leachate Treatment Using a Cu–Fe System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Leachates, particularly those from mature landfills, are difficult to treat by biological processes because of their high toxicity and low biodegradability. Therefore, the development of new treatment technology is necessary. The treatment of landfill leachate by peroxicoagulation and solar peroxicoagulation using a batch electrolytic reactor with a Fe cathode and a Cu anode is proposed. The tested operational variables included pH (2.8 and 8.2), current density (11 and 16 mA cm−2), treatment time (5, 10, 15, 20, 25, and 30 min), and presence of solar ultraviolet (UV) light and were collected using a compound parabolic collector. The optimum conditions were a pH, current density, and treatment time of 2.8, 16 mA cm−2, and 10 min, respectively. The presence of UV did not have a significant effect. The chemical oxygen demand and biochemical oxygen demand removed were 62.3% and 55.5%, respectively. The results of UV-visible absorption, fluorescence, and Fourier transform infrared spectroscopy measurements confirm the oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alimba, C., Gandhi, D., Sivanesan, S., Bhanarkar, M., Naoghare, P., & Bakare, A. (2016). Chemical characterization of simulated landfill soli leachates from Nigeria and India their cytotoxicity and DNA damage inductions on three human cell lines. Chemosphere, 164, 469–479.

    Article  CAS  Google Scholar 

  • American Public Health Association. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Bakare, A., Alimba, C., & Alabi, O. (2013). Genotoxicity and mutagenicity of solid waste leachates: a review. African Journal of Biotechnology, 12, 4206–4220.

    Article  Google Scholar 

  • Barrera Díaz, C., Frontana Uribe, B., & Bilyeu, B. (2014). Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H2O2. Chemosphere, 105, 160–164.

    Article  Google Scholar 

  • Blanco, J., Malato, S., Fernández, P., Vidal, A., Morales, A., Trincado, P., & Rangel, C. (2000). Compound parabolic concentrator technology development to commercial solar detoxification applications. Solar Energy, 67, 317–330.

    Article  Google Scholar 

  • Bouhezila, F., Hariti, M., Lounici, H., & Mameri, N. (2011). Treatment of the OUED SMAR town landfill leachate by an electrochemical reactor. Desalination, 208, 347–353.

    Article  Google Scholar 

  • Brillas, E., Boye, B., Sires, I., Garrido, J., Rodríguez, R., Arias, C., & Comninellis, C. (2004). Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochimica Acta, 49, 4487–4496.

    Article  CAS  Google Scholar 

  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction. Chemical Reviews, 109, 6570–6631.

    Article  CAS  Google Scholar 

  • Brillas, E., Sirés, I., & Cabot Pere, L. (2010). Use of both anode and cathode reactions in wastewater treatment. In G. Chen (Ed.), Electrochemistry for the environment. New York: Springer.

    Google Scholar 

  • Chen, W., Westerhoff, P., & Leenheer, J. (2003). Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology, 37, 5701–5710.

    Article  CAS  Google Scholar 

  • Cui, Y. H., Xue, W. J., Yang, S. Q., Tu, J. L., Guo, X. L., & Liu, Z.-Q. (2018). Electrochemical/peroxydisulfate/Fe3+ treatment of landfill leachate nanofiltration concentrate after ultrafiltration. Chemical Engineering Journal, 353, 208–217.

    Article  CAS  Google Scholar 

  • De Morais Lopes, J., & Zomora Peralta, P. (2005). Use of advanced oxidation processes to improve the biodegradability of mature landfill leachate. Journal of Hazardus Materials, B123, 181–186.

    Article  Google Scholar 

  • Dia, O., Drogui, P., Buelna, G., & Dubé, R. (2018). Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment. Waste Management, 75, 391–399.

    Article  CAS  Google Scholar 

  • Fernández, P., Blanco, J., Sichel, C., & Malato, S. (2005). Water disinfection by solar photocatalysis using compound parabolic collectors. Catalysis Today, 101, 345–352.

    Article  Google Scholar 

  • Garcia Segura, S., Brillas, E., Cornejo Ponce, L., & Salazar, R. (2016). Effect of the Fe3+/Cu2+ ratio on the removal of the recalcitrant oxalic and oxamic acids by electro-Fenton and solar photoelectro-Fenton. Solar Energy, 124, 242–253.

    Article  CAS  Google Scholar 

  • García-Montoya, M. F., Gutiérrez García, S., Alatorre Ordaz, A., Galindo, R., Ornelas, R., & Peralta Hernández, J. M. (2015). Application of electrochemical/BDD process for the treatment wastewater effluents containing pharmaceutical compounds. Journal of Industrial and Engineering Chemistry, 31, 238–243.

    Article  Google Scholar 

  • Garcia-Segura, S., Eiband, M. M. S. G., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267–299.

    Article  CAS  Google Scholar 

  • Greenman, J., Gálvez, A., Giusti, L., & Leropoulos, L. (2009). Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme and Microbial Technology, 44, 112–119.

    Article  CAS  Google Scholar 

  • Guo, J. S., Abbas, A. A., Chen, Y. P., Liu, Z. P., Fang, F., & Chen, P. (2010). Treatment of landfill leachate using a combined stripping, Fenton, SBR and coagulation process. Journal of Hazardous Materials, 178, 699–705.

    Article  CAS  Google Scholar 

  • Hadj Ltaïef, A., Sabatino, S., Proietto, F., Ammar, S., Gadri, A., Galia, A., & Scialdone, O. (2018). Electrochemical treatment of aqueous solutions of organic pollutants by electro-Fenton with natural heterogeneous catalysts under pressure using Ti/IrO2-Ta2O5 or BDD anodes. Chemosphere, 202, 111–118.

    Article  Google Scholar 

  • Hansen, A., Kraus, T., Pellerin, B., Fleck, J., Downing, B., & Bergamaschi, B. (2016). Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limmonology and Oceanography, 61, 1015–1032.

    Article  CAS  Google Scholar 

  • Ishaka, A. R., Hamid, F. S., Mohamad, S., & Tay, K. S. (2018). Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process. Waste Management, 76, 575–581.

    Article  Google Scholar 

  • Kang, K.-H., Sang Shin, H., & Park, H. (2002). Characterization of humic subtances present in landfill leachates with different landfill ages and ist implications. Water Research, 36, 4023–4032.

    Article  CAS  Google Scholar 

  • Klauck, C. R., Giacobb, A., Altenhofen, C. G., Silva, L. B., Meneguzzi, A., Bernardes, A. M., & Rodrigues, M. A. S. (2017). Toxicity elimination of landfill leachate by hybrid processing of advanced oxidation process and adsorptions. Environmental Technology and Innovation, 8, 246–255.

    Article  Google Scholar 

  • Kolthoff, I. M., Stein, S. B., Meehan, E. J., & Sandel, E. B. (Eds.). (1970). Quantitative chemical analysis, 4th edn. Londonx: Macmillan

  • Labiadh, L., Fernanes, A., Lurdes, C., Pacheco, M. J., Gadri, A., Ammar, S., & Lopes, A. (2016). Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate. Journal of Environmental Management, 181, 515–521.

    Article  CAS  Google Scholar 

  • Lenz, S., Böhm, K., Ottner, R., & Huber-H, M. (2016). Determination of leachate compounds relevant for landfill aftercare using FT-IR spectroscopy. Waste Management, 55, 321–329.

    Article  CAS  Google Scholar 

  • López, A., Pagano, M., Volpe, A., & Di Pinto, A. (2003). Fenton’s pre-treatment of mature landfill leachate. Chemosphere, 54, 1005–1010Lu.

    Article  Google Scholar 

  • Lugo Lugo, V., Barrera Días, C., Bilyeu, B., Balderas Hernández, P., Ureña Nuñuez, F., & Sánchez Mendieta, V. (2010). Cr (VI) reduction in wastewater a bimetallic galvanic reactor. Journal Hazardous Materials, 176, 418–425.

    Article  CAS  Google Scholar 

  • Mohajeri, S., Abdul, A. H., Isa, M. H., Zahed, M. A., & Adlan, M. N. (2010). Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique. Journal of Hazardous Materials, 176, 749–758.

    Article  CAS  Google Scholar 

  • Moreira, F. C., Rui, A. R. B., Brillas, E., & Vilar, V. J. P. (2016). Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217–261.

    Article  Google Scholar 

  • Naveen, B. P., Madha, D., Mahapatrab, T. G. S., Sivapullaiah, P. V., & Ramachandra, T. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1–12.

    Article  CAS  Google Scholar 

  • Parra, S., Sarria, V., Malato, S., Péringer, P., & Pulgarin, C. (2000). Photochemical versus couple photochemical-biological flow system for the treatment of two biorecalcitrant herbicides: metobromuron and isoproturon. Applied Catalysis, 27, 153–168.

    Article  CAS  Google Scholar 

  • Peng, Y. (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, Supplement 2. S2567–S2574.

  • Pourbaix, M. (1974). Atlas of electrochemical equilibrium in aqueous solutions. Houston: NACE International Cebelcor.

    Google Scholar 

  • Qiang, Z., Chang, J.-H., & Huang, C.-P. (2002). Electrochemical generation of hydrogen peroxide from dissolve oxygen in acidic solutions. Water Research, 36, 85–94.

    Article  CAS  Google Scholar 

  • Rajca, M., & Bodzek, M. (2013). Kinetics of fulvics and humic acids photodegradation in water solutions. Separation and Purification Technology, 120, 35–42.

    Article  CAS  Google Scholar 

  • Renou, S., Givaudan, J., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of Hazardous Materials, 150(3), 468–493.

    Article  CAS  Google Scholar 

  • Reuter, J. H., & Perdue, E. M. (1977). Importance of heavy metal-organic matter interactions in natural waters. Geochimica et Cosmochimica, 41, 325–334.

    Article  CAS  Google Scholar 

  • Sánchez Pérez, J., Soriano Molina, P., Rivas, G., García Sánchez, J., Casas López, J., & Fernández Sevilla, J. (2017). Effect of temperature and photo absorpion on the kinetics of micropollutant removal by solar photo-Fenton in raceway pond reactors. Chemical Engineering Journal, 310(part 2), 464–472.

    Article  Google Scholar 

  • Sarria, V., Deront, M., Péringer, P., & Pulgarin, C. (2003). Degradation of a biorecalcitrant dye precursor present in indsutrial wastewater by integrated iron (III) photoassited-biological treatment. Applied Catalysis, 40, 231–246.

    Article  CAS  Google Scholar 

  • Silva, A., Dezotti, M., & Sant’Anna, G. (2004). Treatment and detoxification of sanitary landfill leachate. Chemosphere, 55(2), 207–214.

    Article  CAS  Google Scholar 

  • Slack, R., Gronow, J., & Voulvoulis, N. (2005). Household hazardous waste in municipal landfills: contaminants in leachate. Sciencie of The Total Environment, 337(1–3), 119–137.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry. Illinois: Wiley.

    Google Scholar 

  • Tak, S.-Y., Kim, M.-K., Lee, J.-E., Lee, Y.-M., & Zoh, K.-D. (2018). Degradation mechanism of anatoxin-a in UV-C/H2O2 reaction. Chemical Engineering Journal, 334, 1016–1022.

    Article  CAS  Google Scholar 

  • Tauchert, E., Schneider, S., de Morais, J. L., & Peralta-Zamora, P. (2006). Photochemically-assisted electrochemical degradation of landfill leachate. Chemosphere, 64, 1458–1463.

    Article  CAS  Google Scholar 

  • Umar, M., Abdul Aziz, H., & Suffian Yusoff, M. (2010). Trends in the use Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Management, 30(11), 2113–2121.

    Article  CAS  Google Scholar 

  • Velázquez-Peña, S., Linares Hernández, I., Martínez Miranda, V., Barrera Díaz, C., Lugo-Lugo, V., & Bilyeu, B. (2013). Boron-doped diamond electrode performance in Cr (VI) reduction using synthetic and plating wastewater. Separation Science and Technology, 48, 2900–2909.

    Article  Google Scholar 

  • Venu Devika, R., Gandhimathi, P., Nidheesh, S., & Ramesh, S. (2014). Treatment of stabilized landfill leachate using peroxicoagulation process. Separation and Purification Technology, 29, 64–70.

    Article  Google Scholar 

  • Vilar, V., Rocha, E., Mota, F., & Fonseca, A. (2011). Treatment of sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Research, 45, 2647–2658.

    Article  CAS  Google Scholar 

  • Xiaofeng, X., Peng, L., Songhu, Y., Man, T., Mingsen, L., & Wenjing, X. (2013). Cu-catalytic generation of reactive oxidizing species from H2 and O2 produced by water electrolys is for electro-Fenton degradation of organic contaminants. Chemical Engineering Journal, 233, 117–123.

    Article  Google Scholar 

  • Yang, Z., & Zhou, S. (2008). The biological treatment of landfill leachate using a simultaneous aerobic and anaerobic (SAA) bio-reactor system. Chemosphere, 72, 1751–1756.

    Article  CAS  Google Scholar 

  • Zhang, J., Wu, X., Qiu, D., Mao, J., & Zhang, H. (2017). Pilot scale in situ treatment of landfill leachate using combined coagulation-flocculation, hydrolisis acidification, SBR and electro-Fenton oxidation. Enviromental Technology, 3330, 1–10.

    Google Scholar 

  • Zhou, L., Hu, Z., Zhang, C., Bi, Z., Jin, T., & Zhou, M. (2013). Electrogneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode. Separation and Purification Technology, 111, 131–136.

    Article  CAS  Google Scholar 

  • Zhou, B., Yu, Z., Wei, Q., Long, H. Y., Xie, Y., & Wang, Y. (2016). Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode. Applied Surface Science, 377, 406–415.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by “Bridging the Americas: Promoting Global Solutions for Local Landfill Problems through Student Services and Learning (4547/2018E),” and we thank the National Council for Science and Technology (CONACYT) for its support, a scholarship grant, and the economic support of the 243681 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivonne Linares-Hernández.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Suárez, L.A., Bruno-Severo, F., Lugo-Lugo, V. et al. Peroxicoagulation and Solar Peroxicoagulation for Landfill Leachate Treatment Using a Cu–Fe System. Water Air Soil Pollut 229, 385 (2018). https://doi.org/10.1007/s11270-018-4031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4031-7

Keywords

Navigation