Skip to main content
Log in

Hierarchical complexity in ecology: a noneuclidean conception of the data space

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Vegetation is the consequence of the interaction of a series of widely differing processes, each uniquely scaled. Extensive slow processes pertain to high levels of organization, while fast local processes pertain to lower levels. Curvature in ordination gradients is often not artefact, but the result of interference between different levels. As straight gradients are lengthened by the inclusion of more heterogeneity in the data, the nature of relationships change between species and their environment and each other at distant places in environmental space. With change in these relationships, movement down the gradient does not always mean the same thing, and this causes curvature. In plotting a noneuclidean space onto a euclidean reference, the change in metrics causes apparent curvature. The technical causes of curvature (bimodality, double zeros, beta diversity) fit this model. Data transformations scale the analyses so that different levels are reflected in results. Between levels, when the processes of the lower level are not local enough to be trivial, the pattern from new upper level processes cannot assert a new straight gradient with coarser grained criteria. Thus transformation and the emergence of curvature followed eventually by new straight gradients allow the linking of different levels in an orderly fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen T. F. H., Bartell S. M. & Koonce J. F., 1977. Multiple stable configurations in ordination of phytoplankton community change rates. Ecology 58: 1076–1084.

    Google Scholar 

  • Allen, T. F. H., O'Neill, R. V. & Hoekstra, T. W., 1984a. Interlevel relations in ecological research and management: Some working principles from hierarchy theory. USDA Forest Service Gen. Techn. Rep. RM-110, Fort Collins.

  • Allen T. F. H., Sadowsky D. A. & Woodhead N., 1984b. Data transformation as a scaling operation in ordination of plankton. Vegetatio 56: 147–160.

    Google Scholar 

  • Allen T. F. H. & Starr T. B., 1982. Hierarchy: Perspectives for ecological complexity. University of Chicago Press, Chicago.

    Google Scholar 

  • Allen T. F. H. & Wileyto E. P., 1983. A hierarchical model for the complexity of plant communities. J. Theor. Biol. 101: 529–540.

    Google Scholar 

  • Austin M. P., 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11–21.

    Google Scholar 

  • Beals E. W., 1973. Ordination: Mathematical elegance and ecological naiveté. J. Ecol. 61: 23–36.

    Google Scholar 

  • Bray J. R. & Curtis J. T., 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Google Scholar 

  • Curtis J. T., 1959. The vegetation of Wisconsin. Univ. of Wisconsin Press, Madison.

    Google Scholar 

  • Ellenberg H., 1953. Physiologisches und ökologisches Verhalten derselben Pflanzenarten. Ber. Deutsch. Bot. Ges. 65: 351–362.

    Google Scholar 

  • Hill M. O. & GauchJr. H. G., 1980. Detrended Correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • Holling C. S., 1973. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4: 1–24.

    Google Scholar 

  • Levins R., 1974. The qualitative analysis of partially specified systems. Ann. New York Acad. Sci. 231: 123–138.

    Google Scholar 

  • Levins R. & Lewontin R., 1980. Dialectics and reductionism in ecology. Synthese 43: 47–78.

    Google Scholar 

  • Lindman H. & Caelli T., 1978. Constant curvative Riemannian scaling. J. Math. Psychol. 17(2): 89–109.

    Google Scholar 

  • Loucks O. L., 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecol. Monogr. 32: 137–166.

    Google Scholar 

  • Maycock P. F., 1957. The phytosociology of boreal coniferhardwood forests of the great lakes region. Ph.D. thesis University of Wisconsin, Madison.

    Google Scholar 

  • McCune B. & Allen T. F. H., 1984. Will similar forests develop on similar sites? Can. J. Bot. 63: 367–376.

    Google Scholar 

  • McCune B. & Allen T. F. H., 1984. Forest dynamics in the Bitterroot Canyons, Montana. Can. J. Bot. 63: 377–383.

    Google Scholar 

  • Mueller-Dombois D. & Ellenberg H., 1974. Aims and methods of vegetation ecology.Wiley, New York.

    Google Scholar 

  • Simon H. A., 1962. The architecture of complexity: Proc. Am. Phil. Soc. 106: 467–482.

    Google Scholar 

  • Van derMaarel E., 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–114.

    Google Scholar 

  • Williamson M. H., 1978. The ordination of incidence data. J. Ecol. 66: 911–920.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nomenclature follows Gleason (1952), The New Britton and Brown Illustrated Flora of the Northeastern United States and Adjacent Canada.

I am grateful to Grant Cottam for permission to publish his ordination of the Wasatch Mountain data. Tom Givnish made many helpful suggestions for revision of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, T.F.H. Hierarchical complexity in ecology: a noneuclidean conception of the data space. Vegetatio 69, 17–25 (1987). https://doi.org/10.1007/BF00038683

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00038683

Keywords

Navigation