Skip to main content

Advertisement

Log in

Erythropoietin-Coated ZP-Microneedle Transdermal System: Preclinical Formulation, Stability, and Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate the feasibility of coating formulated recombinant human erythropoietin alfa (EPO) on a titanium microneedle transdermal delivery system, ZP-EPO, and assess preclinical patch delivery performance.

Methods

Formulation rheology and surface activity were assessed by viscometry and contact angle measurement. EPO liquid formulation was coated onto titanium microneedles by dip-coating and drying. Stability of coated EPO was assessed by SEC-HPLC, CZE and potency assay. Preclinical in vivo delivery and pharmacokinetic studies were conducted in rats with EPO-coated microneedle patches and compared to subcutaneous EPO injection.

Results

Studies demonstrated successful EPO formulation development and coating on microneedle arrays. ZP-EPO patch was stable at 25°C for at least 3 months with no significant change in % aggregates, isoforms, or potency. Preclinical studies in rats showed the ZP-EPO microneedle patches, coated with 750 IU to 22,000 IU, delivered with high efficiency (75–90%) with a linear dose response. PK profile was similar to subcutaneous injection of commercial EPO.

Conclusions

Results suggest transdermal microneedle patch delivery of EPO is feasible and may offer an efficient, dose-adjustable, patient-friendly alternative to current intravenous or subcutaneous routes of administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Centers for Disease Control and Prevention (CDC). National chronic kidney disease fact sheet: general information and national estimates on chronic kidney disease in the United States, 2010. Atlanta, GA: U.S. Department of Health and Human Services (HHS), CDC; 2010.

    Google Scholar 

  2. EPOGEN® (epoetin alfa) United States Prescribing Information (USPI).

  3. Park K, Kwon IC, Park K. Oral protein delivery: current status and future prospect. React Funct Polym. 2011;71:280–7.

    Article  CAS  Google Scholar 

  4. Kalluri H, Banga AK. Transdermal delivery of proteins. AAPS Pharm Sci Tech. 2011;12:431–41.

    Article  CAS  Google Scholar 

  5. Bachhav YG, Summer S, Heinrich A, Bragagna T, Boehler C, Kalia YN. Minimally invasive delivery of peptides and proteins across the skin using P.L.E.A.S.E.® technology. AAPS J. 2008;10(S2):1168.

    Google Scholar 

  6. Levin G, Gershonowitz A, Sacks H, Stern M, Sherman A, Rudaev S, Zivin I, Phillip M. Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res. 2005;22:550–5.

    Article  PubMed  CAS  Google Scholar 

  7. Badkar A, Smith A, Eppstein J, Banga A. Transdermal delivery of interferon alpha-2B using microporation and iontophoresis in hairless rats. Pharm Res. 2007;24:1389–95.

    Article  PubMed  CAS  Google Scholar 

  8. Badran MM, Kuntsche J, Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci. 2009;36:511–23.

    Article  PubMed  CAS  Google Scholar 

  9. Burton SA, Ng CY, Simmers R, Moeckly C, Brandwein D, Gilbert T, Johnson N, Brown K, Alston T, Prochnow G, Siebenaler K, Hansen K. Rapid intradermal delivery of liquid formulations using a hollow microstructured array. Pharm Res. 2011;28:31–40.

    Article  PubMed  CAS  Google Scholar 

  10. Gupta J, Felner EI, Prausnitz MR. Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects. Diabetes Technol Ther. 2011;13:451–6.

    Article  PubMed  Google Scholar 

  11. Li G, Badkar A, Kalluri H, Banga AK. Microchannels created by sugar and metal microneedles: characterization by microscopy, macromolecular flux and other techniques. J Pharm Sci. 2010;99:1931–41.

    Article  PubMed  CAS  Google Scholar 

  12. Fukushima K, Ise A, Morita H, Hasegawa R, Ito Y, Sugioka N, Takada K. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm Res. 2011;28:7–21.

    Article  PubMed  CAS  Google Scholar 

  13. Migalska K, Morrow DI, Garland MJ, Thakur R, Woolfson AD, Donnelly RF. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm Res. 2011;28:1919–30.

    Article  PubMed  CAS  Google Scholar 

  14. Lee JW, Choi SO, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011;18:531–9.

    Article  Google Scholar 

  15. Gill HS, Söderholm J, Prausnitz MR, Sällberg M. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther. 2010;17:811–4.

    Article  PubMed  CAS  Google Scholar 

  16. Widera G, Johnson J, Kim L, Libiran L, Nyam K, Daddona PE, Cormier M. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine. 2006;24:1653–64.

    Article  PubMed  CAS  Google Scholar 

  17. Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang D, Daddona PE. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release. 2004;97:503–11.

    PubMed  CAS  Google Scholar 

  18. Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, Daddona PE. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res. 2002;19:63–70.

    Article  PubMed  CAS  Google Scholar 

  19. Cosman F, Lane NE, Bolognese M, Zanchetta J, Garcia-Hernandez PA, Sees K, Matriano JA, Gaumer K, Daddona PE. Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women. J Clin Endocrin Metab. 2010;95:151–8.

    Article  CAS  Google Scholar 

  20. Daddona PE, Matriano JA, Mandema J, Maa Y-F. Parathyroid hormone (1-34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm Res. 2011;28:159–65.

    Article  PubMed  CAS  Google Scholar 

  21. Sathyan G, Sun Y-N, Weyers R, Daddona P, Staehr P, Gupta S. Macroflux® desmopressin transdermal delivery system: pharmacokinetic and pharmacodynamic evaluation in healthy volunteers. AAPS J. 2004;6(S1):665.

    Google Scholar 

  22. Ito Y, Yoshimitsu J, Shiroyama K, Sugioka N, Takada K. Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target. 2006;14:255–61.

    Article  PubMed  CAS  Google Scholar 

  23. Ito Y, Shiroyamaa K, Yoshimitsua J, Ohashia Y, Sugiokaa N, Takadaa K. Pharmacokinetic and pharmacodynamic studies following percutaneous absorption of erythropoietin micropiles to rats. J Control Release. 2007;121:176–80.

    Article  PubMed  CAS  Google Scholar 

  24. Ito Y, Hasegawa R, Fukushima K, Sugioka N, Takada K. Self-dissolving micropile array chip as percutaneous delivery system of protein drug. Biol Pharm Bull. 2010;33:683–90.

    Article  PubMed  CAS  Google Scholar 

  25. European Pharmacopeia 7th edition. European Department for the quality of the medicines. Strasbourg. France (2010).

  26. Cormier M, Neukermans AP, Block B, Theeuwes FT, Amkraut A. A device for enhancing transdermal agent delivery or sampling. EP0914178B1, (2003).

  27. Ameri M, Fan SC, Maa YF. Parathyroid hormone PTH(1-34) formulation that enables uniform coating on a novel transdermal microprojection delivery system. Pharm Res. 2010;27:303–13.

    Article  PubMed  CAS  Google Scholar 

  28. Principles of Laboratory Animal Care. NIH publication #85-23, revised in (1985).

  29. Guide for the Care and Use of Laboratory Animals (National Research Council). National Academy Press. Washington DC (1996).

  30. Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharm Exp Thera. 1944;82:377–90.

    CAS  Google Scholar 

  31. Ameri M, Daddona PE, Maa Y-F. Demonstrated solid-state stability of parathyroid hormone PTH (1-34) coated on a novel transdermal Microneedle delivery system. Pharm Res. 2009;26:2454–63.

    Article  PubMed  CAS  Google Scholar 

  32. Woo S, Krzyzanski W, Jusko WJ. Pharmacokinetic and Pharmacodynamic modelling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats. J Pharm Exp Thera. 2006;319:1297–306.

    Article  CAS  Google Scholar 

  33. Woo S, Jusko WJ. Interspecies comparisons of pharmacokinetics and pharmacodynamics of recombinant human erythropoietin. Drug Metab Dispos. 2007;35:1672–8.

    Article  PubMed  CAS  Google Scholar 

  34. Harvey AJ, Kaestner SA, Sutter DE, Harvey NG, Mikszta JA, Pettis RJ. Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. Pharm Res. 2011;28:107–16.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

The authors would like to thank Joseph A. Bravo, James A. Matriano for assistance in the pharmacokinetic studies, Perry Weissburg, Shelly Fan, Scott Sellers for their contribution to the analytical analyses and Kenneth Chan for formulation preparation and SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Daddona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, E.E., Ameri, M., Wang, X. et al. Erythropoietin-Coated ZP-Microneedle Transdermal System: Preclinical Formulation, Stability, and Delivery. Pharm Res 29, 1618–1626 (2012). https://doi.org/10.1007/s11095-012-0674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0674-z

KEY WORDS

Navigation