Skip to main content

Advertisement

Log in

Prediction of Nonlinear Intestinal Absorption of CYP3A4 and P-Glycoprotein Substrates from their In Vitro Km Values

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

CYP3A4 and P-glycoprotein (P-gp) are present in the human intestine and mediate intestinal first-pass metabolism and the efflux of oral drugs, respectively. We aimed to predict whether intestinal CYP3A4/P-gp is saturated in a therapeutic dose range.

Methods

Information on the Michaelis–Menten constant (Km), product of the fraction absorbed (Fa) and intestinal availability (Fg) (FaFg) of CYP3A4/P-gp substrates, and clinical AUC data including two or more different dosages for each CYP3A4/P-gp substrate was collected. The relationship between dose-normalized AUC and dose/Km value, termed the linearity index (LIN), was analyzed.

Results

Among 38 CYP3A4 and/or P-gp substrates, 16 substrates exhibited nonlinear pharmacokinetics and 22 substrates exhibited linear pharmacokinetics. Substrates with a small LIN tended to exhibit linear pharmacokinetics. The smallest LIN values of a substrate that exhibited nonlinear pharmacokinetics were 2.8 and 0.77 L for CYP3A4 and P-gp substrates, respectively. A decision tree for predicting nonlinear pharmacokinetics of CYP3A4/P-gp substrates based on LIN and FaFg of drugs was proposed. This decision tree correctly predicted linearity or nonlinearity for 24 of 29 drugs.

Conclusions

LIN is useful for predicting CYP3A4/P-gp-mediated nonlinearity in intestinal absorption process in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos. 2006;34(5):880–6.

    Article  PubMed  CAS  Google Scholar 

  2. Kato M, Chiba K, Hisaka A, Ishigami M, Kayama M, Mizuno N, et al. The intestinal first-pass metabolism of substrates of CYP3A4 and P-glycoprotein-quantitative analysis based on information from the literature. Drug Metab Pharmacokinet. 2003;18(6):365–72.

    Article  PubMed  CAS  Google Scholar 

  3. Kato M, Chiba K, Ito T, Koue T, Sugiyama Y. Prediction of interindividual variability in pharmacokinetics for CYP3A4 substrates in humans. Drug Metab Pharmacokinet. 2010;25(4):367–78.

    Article  PubMed  CAS  Google Scholar 

  4. Kadono K, Akabane T, Tabata K, Gato K, Terashita S, Teramura T. Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor. Drug Metab Dispos. 2010;38(7):1230–7.

    Article  PubMed  CAS  Google Scholar 

  5. Varma MV, Sateesh K, Panchagnula R. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. Mol Pharm. 2005;2(1):12–21.

    Article  PubMed  CAS  Google Scholar 

  6. Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog. 1995;13(3):129–34.

    Article  PubMed  CAS  Google Scholar 

  7. Benet LZ, Cummins CL, Wu CY. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int J Pharm. 2004;277(1–2):3–9.

    Article  PubMed  CAS  Google Scholar 

  8. Cummins CL, Jacobsen W, Christians U, Benet LZ. CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam. J Pharmacol Exp Ther. 2004;308(1):143–55.

    Article  PubMed  CAS  Google Scholar 

  9. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.

    Article  PubMed  CAS  Google Scholar 

  10. Rostami-Hodjegan A, Tucker GT. ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug-drug interaction. Drug Discovery Today: Tech. 2004;1(4):441–8.

    Article  CAS  Google Scholar 

  11. Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab. 2007;8(7):676–84.

    Article  PubMed  CAS  Google Scholar 

  12. Tachibana T, Kato M, Takano J, Sugiyama Y. Predicting drug-drug interactions involving the inhibition of intestinal CYP3A4 and P-glycoprotein. Curr Drug Metab. 2010;11(9):762–77.

    Article  PubMed  CAS  Google Scholar 

  13. Tachibana T, Kato M, Watanabe T, Mitsui T, Sugiyama Y. Method for predicting the risk of drug-drug interactions involving inhibition of intestinal CYP3A4 and P-glycoprotein. Xenobiotica. 2009;39(6):430–43.

    Article  PubMed  CAS  Google Scholar 

  14. Boyd RA, Lalonde RL. Nontraditional approaches to first-in-human studies to increase efficiency of drug development: will microdose studies make a significant impact? Clin Pharmacol Ther. 2007;81(1):24–6.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner CC. Langer O. Adv Drug Deliv Rev: Approaches using molecular imaging technology - use of PET in clinical microdose studies; 2010.

    Google Scholar 

  16. Lewis LD. Early human studies of investigational agents: dose or microdose? Br J Clin Pharmacol. 2009;67(3):277–9.

    Article  PubMed  Google Scholar 

  17. Combes RD, Berridge T, Connelly J, Eve MD, Garner RC, Toon S, et al. Early microdose drug studies in human volunteers can minimise animal testing: proceedings of a workshop organised by Volunteers in Research and Testing. Eur J Pharm Sci. 2003;19(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  18. Wang JL, Aston K, Limburg D, Ludwig C, Hallinan AE, Koszyk F, et al. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part III: the three microdose candidates. Bioorg Med Chem Lett. 2010;20(23):7164–8.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou XJ, Garner RC, Nicholson S, Kissling CJ, Mayers D. Microdose pharmacokinetics of IDX899 and IDX989, candidate HIV-1 non-nucleoside reverse transcriptase inhibitors, following oral and intravenous administration in healthy male subjects. J Clin Pharmacol. 2009;49(12):1408–16.

    Article  PubMed  CAS  Google Scholar 

  20. Madan A, O'Brien Z, Wen J, O'Brien C, Farber RH, Beaton G, et al. A pharmacokinetic evaluation of five H(1) antagonists after an oral and intravenous microdose to human subjects. Br J Clin Pharmacol. 2009;67(3):288–98.

    Article  PubMed  CAS  Google Scholar 

  21. Ozawa N, Shimizu T, Morita R, Yokono Y, Ochiai T, Munesada K, et al. Transporter database, TP-Search: a web-accessible comprehensive database for research in pharmacokinetics of drugs. Pharm Res. 2004;21(11):2133–4.

    Article  PubMed  CAS  Google Scholar 

  22. Uchimura T, Kato M, Saito T, Kinoshita H. Prediction of human blood-to-plasma drug concentration ratio. Biopharm Drug Dispos. 2010;31(5–6):286–97.

    PubMed  CAS  Google Scholar 

  23. Lilja JJ, Kivisto KT, Backman JT, Lamberg TS, Neuvonen PJ. Grapefruit juice substantially increases plasma concentrations of buspirone. Clin Pharmacol Ther. 1998;64(6):655–60.

    Article  PubMed  CAS  Google Scholar 

  24. Milne RJ, Buckley MM. Celiprolol. An updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in cardiovascular disease. Drugs. 1991;41(6):941–69.

    Article  PubMed  CAS  Google Scholar 

  25. Lilja JJ, Backman JT, Laitila J, Luurila H, Neuvonen PJ. Itraconazole increases but grapefruit juice greatly decreases plasma concentrations of celiprolol. Clin Pharmacol Ther. 2003;73(3):192–8.

    Article  PubMed  CAS  Google Scholar 

  26. Gao J, Murase O, Schowen RL, Aube J, Borchardt RT. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001;18(2):171–6.

    Article  PubMed  CAS  Google Scholar 

  27. Korjamo T, Kemilainen H, Heikkinen AT, Monkkonen J. Decrease in intracellular concentration causes the shift in Km value of efflux pump substrates. Drug Metab Dispos. 2007;35(9):1574–9.

    Article  PubMed  CAS  Google Scholar 

  28. Shirasaka Y, Sakane T, Yamashita S. Effect of P-glycoprotein expression levels on the concentration-dependent permeability of drugs to the cell membrane. J Pharm Sci. 2008;97(1):553–65.

    Article  PubMed  CAS  Google Scholar 

  29. Tachibana T, Kitamura S, Kato M, Mitsui T, Shirasaka Y, Yamashita S, et al. Model analysis of the concentration-dependent permeability of P-gp substrates. Pharm Res. 2010;27(3):442–6.

    Article  PubMed  CAS  Google Scholar 

  30. Heikkinen AT, Korjamo T, Lepikko V, Monkkonen J. Effects of experimental setup on the apparent concentration dependency of active efflux transport in in vitro cell permeation experiments. Mol Pharm. 2010;7(2):605–17.

    Article  PubMed  CAS  Google Scholar 

  31. Kato Y, Miyazaki T, Kano T, Sugiura T, Kubo Y, Tsuji A. Involvement of influx and efflux transport systems in gastrointestinal absorption of celiprolol. J Pharm Sci. 2009;98(7):2529–39.

    Article  PubMed  CAS  Google Scholar 

  32. Shirasaka Y, Kuraoka E, Spahn-Langguth H, Nakanishi T, Langguth P, Tamai I. Species difference in the effect of grapefruit juice on intestinal absorption of talinolol between human and rat. J Pharmacol Exp Ther. 2010;332(1):181–9.

    Article  PubMed  CAS  Google Scholar 

  33. Yeh KC, Deutsch PJ, Haddix H, Hesney M, Hoagland V, Ju WD, et al. Single-dose pharmacokinetics of indinavir and the effect of food. Antimicrob Agents Chemother. 1998;42(2):332–8.

    PubMed  CAS  Google Scholar 

  34. Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol. 2004;57(4):473–86.

    Article  PubMed  CAS  Google Scholar 

  35. Iwatsubo T, Hisaka A, Suzuki H, Sugiyama Y. Prediction of in vivo nonlinear first-pass hepatic metabolism of YM796 from in vitro metabolic data. J Pharmacol Exp Ther. 1998;286(1):122–7.

    PubMed  CAS  Google Scholar 

  36. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–9.

    PubMed  CAS  Google Scholar 

  37. Yamane N, Tozuka Z, Sugiyama Y, Tanimoto T, Yamazaki A, Kumagai Y. Microdose clinical trial: quantitative determination of fexofenadine in human plasma using liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;858(1–2):118–28.

    PubMed  CAS  Google Scholar 

  38. Yamazaki A, Kumagai Y, Yamane N, Tozuka Z, Sugiyama Y, Fujita T, et al. Microdose study of a P-glycoprotein substrate, fexofenadine, using a non-radioisotope-labelled drug and LC/MS/MS. J Clin Pharm Ther. 2010;35(2):169–75.

    Article  PubMed  CAS  Google Scholar 

  39. Lappin G, Shishikura Y, Jochemsen R, Weaver RJ, Gesson C, Houston B, et al. Pharmacokinetics of fexofenadine: evaluation of a microdose and assessment of absolute oral bioavailability. Eur J Pharm Sci. 2010;40(2):125–31.

    Article  PubMed  CAS  Google Scholar 

  40. Bolger MB, Lukacova V, Woltosz WS. Simulations of the nonlinear dose dependence for substrates of influx and efflux transporters in the human intestine. AAPS J. 2009;11(2):353–63.

    Article  PubMed  CAS  Google Scholar 

  41. Tubic M, Wagner D, Spahn-Langguth H, Bolger MB, Langguth P. In silico modeling of non-linear drug absorption for the P-gp substrate talinolol and of consequences for the resulting pharmacodynamic effect. Pharm Res. 2006;23(8):1712–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiko Tachibana.

Appendix

Appendix

Table References

a-1. Lavrijsen KL, Van Houdt JM, Van Dyck DM, Hendrickx JJ, Woestenborghs RJ, Lauwers W, et al. Is the metabolism of alfentanil subject to debrisoquine polymorphism? A study using human liver microsomes. Anesthesiology. 1988;69(4):535–540.

a-2. Wandel C, Kim R, Wood M, Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002;96(4):913–920.

a-3. Varma MV, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53(3):1098–1108.

a-4. Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–891.

a-5. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–1158.

a-6. Park JE, Kim KB, Bae SK, Moon BS, Liu KH, Shin JG. Contribution of cytochrome P450 3A4 and 3A5 to the metabolism of atorvastatin. Xenobiotica. 2008;38(9):1240–1251.

a-7. Wang E, Casciano CN, Clement RP, Johnson WW. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res. 2001;18(6):800–806.

a-8. Tachibana T, Kato M, Watanabe T, Mitsui T, Sugiyama Y. Method for predicting the risk of drug-drug interactions involving inhibition of intestinal CYP3A4 and P-glycoprotein. Xenobiotica. 2009;39(6):430–443.

a-9. Zhu M, Zhao W, Jimenez H, Zhang D, Yeola S, Dai R, et al. Cytochrome P450 3A-mediated metabolism of buspirone in human liver microsomes. Drug Metab Dispos. 2005;33(4):500–507.

a-10. Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002;303(3):1029–1037.

a-11. Brunton LL, Lazo JS, Parker KL (eds.). Goodman & Gilman's The Pharmacological Basis of Therapeutics. New York: McGRAW-HILL; 2006.

a-12. Milne RJ, Buckley MM. Celiprolol. An updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in cardiovascular disease. Drugs. 1991;41(6):941–969.

a-13. Gao J, Murase O, Schowen RL, Aube J, Borchardt RT. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001;18(2):171–176.

a-14. Wen B, Zhou M. Metabolic activation of the phenothiazine antipsychotics chlorpromazine and thioridazine to electrophilic iminoquinone species in human liver microsomes and recombinant P450s. Chem Biol Interact. 2009;181(2):220–226.

a-15. Boulton DW, DeVane CL, Liston HL, Markowitz JS. In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002;71(2):163–169.

a-16. Yeung PK, Hubbard JW, Korchinski ED, Midha KK. Pharmacokinetics of chlorpromazine and key metabolites. Eur J Clin Pharmacol. 1993;45(6):563–569.

a-17. Pearce RE, Gotschall RR, Kearns GL, Leeder JS. Cytochrome P450 Involvement in the biotransformation of cisapride and racemic norcisapride in vitro: differential activity of individual human CYP3A isoforms. Drug Metab Dispos. 2001;29(12):1548–1554.

a-18. Lowry JA, Kearns GL, Abdel-Rahman SM, Nafziger AN, Khan IS, Kashuba AD, et al. Cisapride: a potential model substrate to assess cytochrome P4503A4 activity in vivo. Clin Pharmacol Ther. 2003;73(3):209–222.

a-19. Rodrigues AD, Roberts EM, Mulford DJ, Yao Y, Ouellet D. Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab Dispos. 1997;25(5):623–630.

a-20. Wang EJ, Casciano CN, Clement RP, Johnson WW. Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001;289(2):580–585.

a-21. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ. Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation. Biochem Pharmacol. 1997;53(1):111–116.

a-22. Bebawy M, Morris MB, Roufogalis BD. A continuous fluorescence assay for the study of P-glycoprotein-mediated drug efflux using inside-out membrane vesicles. Anal Biochem. 1999;268(2):270–277.

a-23. Ambudkar SV, Lelong IH, Zhang J, Cardarelli CO, Gottesman MM, Pastan I. Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci U S A. 1992;89(18):8472–8476.

a-24. Rochdi M, Sabouraud A, Girre C, Venet R, Scherrmann JM. Pharmacokinetics and absolute bioavailability of colchicine after i.v. and oral administration in healthy human volunteers and elderly subjects. Eur J Clin Pharmacol. 1994;46(4):351–354.

a-25. Niwa T, Yamamoto S, Saito M, Shiraga T, Takagi A. Effect of cyclosporine and tacrolimus on cytochrome p450 activities in human liver microsomes. Yakugaku Zasshi. 2007;127(1):209–216.

a-26. Fricker G, Drewe J, Huwyler J, Gutmann H, Beglinger C. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro-in vivo correlation. Br J Pharmacol. 1996;118(7):1841–1847.

a-27. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993;268(9):6077–6080.

a-28. Adachi Y, Suzuki H, Sugiyama Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res. 2001;18(12):1660–1668.

a-29. Voorman RL, Maio SM, Hauer MJ, Sanders PE, Payne NA, Ackland MJ. Metabolism of delavirdine, a human immunodeficiency virus type-1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A. Drug Metab Dispos. 1998;26(7):631–639.

a-30. Stormer E, von Moltke LL, Perloff MD, Greenblatt DJ. Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture. Pharm Res. 2002;19(7):1038–1045.

a-31. Andersson T, Miners JO, Veronese ME, Birkett DJ. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131–137.

a-32. Lacarelle B, Rahmani R, de Sousa G, Durand A, Placidi M, Cano JP. Metabolism of digoxin, digoxigenin digitoxosides and digoxigenin in human hepatocytes and liver microsomes. Fundam Clin Pharmacol. 1991;5(7):567–582.

a-33. Sutton D, Butler AM, Nadin L, Murray M. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther. 1997;282(1):294–300.

a-34. Takara K, Sakaeda T, Tanigawara Y, Nishiguchi K, Ohmoto N, Horinouchi M, et al. Effects of 12 Ca2+ antagonists on multidrug resistance, MDR1-mediated transport and MDR1 mRNA expression. Eur J Pharm Sci. 2002;16(3):159–165.

a-35. Zhang ZY, Chen M, Chen J, Padval MV, Kansra VV. Biotransformation and in vitro assessment of metabolism-associated drug-drug interaction for CRx-102, a novel combination drug candidate. J Pharm Biomed Anal. 2009;50(2):200–209.

a-36. Bjornsson TD, Mahony C. Clinical pharmacokinetics of dipyridamole. Thromb Res Suppl. 1983;4(93–104.

a-37. Riley RJ, Howbrook D. In vitro analysis of the activity of the major human hepatic CYP enzyme (CYP3A4) using [N-methyl-14 C]-erythromycin. J Pharmacol Toxicol Methods. 1997;38(4):189–193.

a-38. Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lan LB, et al. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol. 2002;61(5):964–973.

a-39. Relling MV, Evans R, Dass C, Desiderio DM, Nemec J. Human cytochrome P450 metabolism of teniposide and etoposide. J Pharmacol Exp Ther. 1992;261(2):491–496.

a-40. Kawashiro T, Yamashita K, Zhao XJ, Koyama E, Tani M, Chiba K, et al. A study on the metabolism of etoposide and possible interactions with antitumor or supporting agents by human liver microsomes. J Pharmacol Exp Ther. 1998;286(3):1294–1300.

a-41. Guo A, Marinaro W, Hu P, Sinko PJ. Delineating the contribution of secretory transporters in the efflux of etoposide using Madin-Darby canine kidney (MDCK) cells overexpressing P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion transporter (cMOAT). Drug Metab Dispos. 2002;30(4):457–463.

a-42. Eriksson UG, Lundahl J, Baarnhielm C, Regardh CG. Stereoselective metabolism of felodipine in liver microsomes from rat, dog, and human. Drug Metab Dispos. 1991;19(5):889–894.

a-43. Kato M, Chiba K, Hisaka A, Ishigami M, Kayama M, Mizuno N, et al. The intestinal first-pass metabolism of substrates of CYP3A4 and P-glycoprotein-quantitative analysis based on information from the literature. Drug Metab Pharmacokinet. 2003;18(6):365–372.

a-44. Simpson K, Jarvis B. Fexofenadine: a review of its use in the management of seasonal allergic rhinitis and chronic idiopathic urticaria. Drugs. 2000;59(2):301–321.

a-45. Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27(8):866–871.

a-46. Pan LP, Wijnant P, De Vriendt C, Rosseel MT, Belpaire FM. Characterization of the cytochrome P450 isoenzymes involved in the in vitro N-dealkylation of haloperidol. Br J Clin Pharmacol. 1997;44(6):557–564.

a-47. Chiba M, Hensleigh M, Lin JH. Hepatic and intestinal metabolism of indinavir, an HIV protease inhibitor, in rat and human microsomes. Major role of CYP3A. Biochem Pharmacol. 1997;53(8):1187–1195.

a-48. Koudriakova T, Iatsimirskaia E, Utkin I, Gangl E, Vouros P, Storozhuk E, et al. Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos. 1998;26(6):552–561.

a-49. Choo EF, Leake B, Wandel C, Imamura H, Wood AJ, Wilkinson GR, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos. 2000;28(6):655–660.

a-50. Yeh KC, Stone JA, Carides AD, Rolan P, Woolf E, Ju WD. Simultaneous investigation of indinavir nonlinear pharmacokinetics and bioavailability in healthy volunteers using stable isotope labeling technique: study design and model-independent data analysis. J Pharm Sci. 1999;88(5):568–573.

a-51. Zeng Z, Andrew NW, Arison BH, Luffer-Atlas D, Wang RW. Identification of cytochrome P4503A4 as the major enzyme responsible for the metabolism of ivermectin by human liver microsomes. Xenobiotica. 1998;28(3):313–321.

a-52. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J. Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003;46(9):1716–1725.

a-53. Oda Y, Kharasch ED. Metabolism of levo-alpha-Acetylmethadol (LAAM) by human liver cytochrome P450: involvement of CYP3A4 characterized by atypical kinetics with two binding sites. J Pharmacol Exp Ther. 2001;297(1):410–422.

a-54. Crettol S, Digon P, Golay KP, Brawand M, Eap CB. In vitro P-glycoprotein-mediated transport of (R)-, (S)-, (R,S)-methadone, LAAM and their main metabolites. Pharmacology. 2007;80(4):304–311.

a-55. Walsh SL, Johnson RE, Cone EJ, Bigelow GE. Intravenous and oral l-alpha-acetylmethadol: pharmacodynamics and pharmacokinetics in humans. J Pharmacol Exp Ther. 1998;285(1):71–82.

a-56. Pichard L, Curi-Pedrosa R, Bonfils C, Jacqz-Aigrain E, Domergue J, Joyeux H, et al. Oxidative metabolism of lansoprazole by human liver cytochromes P450. Mol Pharmacol. 1995;47(2):410–418.

a-57. Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm MF. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2001;364(6):551–557.

a-58. Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet. 1997;32(2):101–119.

a-59. Ito T, Yano I, Tanaka K, Inui KI. Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1997;282(2):955–960.

a-60. Yamaguchi H, Yano I, Hashimoto Y, Inui KI. Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line caco-2. J Pharmacol Exp Ther. 2000;295(1):360–366.

a-61. Marechal JD, Yu J, Brown S, Kapelioukh I, Rankin EM, Wolf CR, et al. In silico and in vitro screening for inhibition of cytochrome P450 CYP3A4 by comedications commonly used by patients with cancer. Drug Metab Dispos. 2006;34(4):534–538.

a-62. Kim KA, Chung J, Jung DH, Park JY. Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes. Eur J Clin Pharmacol. 2004;60(8):575–581.

a-63. Yumibe N, Huie K, Chen KJ, Clement RP, Cayen MN. Identification of human liver cytochrome P450s involved in the microsomal metabolism of the antihistaminic drug loratadine. Int Arch Allergy Immunol. 1995;107(1–3):420.

a-64. Wang EJ, Casciano CN, Clement RP, Johnson WW. Evaluation of the interaction of loratadine and desloratadine with P-glycoprotein. Drug Metab Dispos. 2001;29(8):1080–1083.

a-65. Shou M, Dai R, Cui D, Korzekwa KR, Baillie TA, Rushmore TH. A kinetic model for the metabolic interaction of two substrates at the active site of cytochrome P450 3A4. J Biol Chem. 2001;276(3):2256–2262.

a-66. Soldner A, Benet LZ, Mutschler E, Christians U. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and caco-2 cell monolayers. Br J Pharmacol. 2000;129(6):1235–1243.

a-67. Charasson V, Haaz MC, Robert J. Determination of drug interactions occurring with the metabolic pathways of irinotecan. Drug Metab Dispos. 2002;30(6):731–733.

a-68. Troutman MD, Thakker DR. Efflux ratio cannot assess P-glycoprotein-mediated attenuation of absorptive transport: asymmetric effect of P-glycoprotein on absorptive and secretory transport across Caco-2 cell monolayers. Pharm Res. 2003;20(8):1200–1209.

a-69. Nakamura K, Ariyoshi N, Iwatsubo T, Fukunaga Y, Higuchi S, Itoh K, et al. Inhibitory effects of nicardipine to cytochrome P450 (CYP) in human liver microsomes. Biol Pharm Bull. 2005;28(5):882–885.

a-70. Thummel KE, O'Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.

a-71. Granfors MT, Wang JS, Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT. Differential inhibition of cytochrome P450 3A4, 3A5 and 3A7 by five human immunodeficiency virus (HIV) protease inhibitors in vitro. Basic Clin Pharmacol Toxicol. 2006;98(1):79–85.

a-72. Katoh M, Nakajima M, Yamazaki H, Yokoi T. Inhibitory potencies of 1,4-dihydropyridine calcium antagonists to P-glycoprotein-mediated transport: comparison with the effects on CYP3A4. Pharm Res. 2000;17(10):1189–1197.

a-73. Graham DJ, Dow RJ, Hall DJ, Alexander OF, Mroszczak EJ, Freedman D. The metabolism and pharmacokinetics of nicardipine hydrochloride in man. Br J Clin Pharmacol. 1985;20 Suppl 1(23S-28S.

a-74. Combalbert J, Fabre I, Fabre G, Dalet I, Derancourt J, Cano JP, et al. Metabolism of cyclosporin A. IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos. 1989;17(2):197–207.

a-75. Wang E, Lew K, Barecki M, Casciano CN, Clement RP, Johnson WW. Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4. Chem Res Toxicol. 2001;14(12):1596–1603.

a-76. Ozdemir V, Kalow W, Tang BK, Paterson AD, Walker SE, Endrenyi L, et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics. 2000;10(5):373–388.

a-77. Mikus G, Fischer C, Heuer B, Langen C, Eichelbaum M. Application of stable isotope methodology to study the pharmacokinetics, bioavailability and metabolism of nitrendipine after i.v. and p.o. administration. Br J Clin Pharmacol. 1987;24(5):561–569.

a-78. Shirley KL, Hon YY, Penzak SR, Lam YW, Spratlin V, Jann MW. Correlation of cytochrome P450 (CYP) 1A2 activity using caffeine phenotyping and olanzapine disposition in healthy volunteers. Neuropsychopharmacology. 2003;28(5):961–966.

a-79. Mizushima H, Takanaka K, Abe K, Fukazawa I, Ishizuka H. Stereoselective pharmacokinetics of oxybutynin and N-desethyloxybutynin in vitro and in vivo. Xenobiotica. 2007;37(1):59–73.

a-80. Callegari E, Malhotra B, Bungay PJ, Webster R, Fenner KS, Kempshall S, et al. A comprehensive non-clinical evaluation of the CNS penetration potential of antimuscarinic agents for the treatment of overactive bladder. Br J Clin Pharmacol. 2011;72(2):235–246.

a-81. Regardh CG, Lundborg P, Gabrielsson M, Heggelund A, Kylberg-Hanssen K. Pharmacokinetics of a single intravenous and oral dose of pafenolol--a beta 1-adrenoceptor antagonist with atypical absorption and disposition properties--in man. Pharm Res. 1990;7(12):1222–1227.

a-82. Doppenschmitt S, Langguth P, Regardh CG, Andersson TB, Hilgendorf C, Spahn-Langguth H. Characterization of binding properties to human P-glycoprotein: development of a [3H]verapamil radioligand-binding assay. J Pharmacol Exp Ther. 1999;288(1):348–357.

a-83. Regardh CG, Heggelund A, Kylberg-Hanssen K, Lundborg P. Pharmacokinetics of pafenolol after i.v. and oral administration of three separate doses of different strength to man. Biopharm Drug Dispos. 1990;11(7):607–617.

a-84. Desta Z, Kerbusch T, Soukhova N, Richard E, Ko JW, Flockhart DA. Identification and characterization of human cytochrome P450 isoforms interacting with pimozide. J Pharmacol Exp Ther. 1998;285(2):428–437.

a-85. Wikinski S. [Pharmacokinetic mechanisms underlying resistance in psychopharmacological treatment. The role of P-glycoprotein]. Vertex. 2005;16(64):438–441.

a-86. Dey S, Ramachandra M, Pastan I, Gottesman MM, Ambudkar SV. Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein. Proc Natl Acad Sci U S A. 1997;94(20):10594–10599.

a-87. Hasselstrom J, Linnet K. In vitro studies on quetiapine metabolism using the substrate depletion approach with focus on drug-drug interactions. Drug Metabol Drug Interact. 2006;21(3–4):187–211.

a-88. Ludwig E, Schmid J, Beschke K, Ebner T. Activation of human cytochrome P-450 3A4-catalyzed meloxicam 5'-methylhydroxylation by quinidine and hydroquinidine in vitro. J Pharmacol Exp Ther. 1999;290(1):1–8.

a-89. Nielsen TL, Rasmussen BB, Flinois JP, Beaune P, Brosen K. In vitro metabolism of quinidine: the (3S)-3-hydroxylation of quinidine is a specific marker reaction for cytochrome P-4503A4 activity in human liver microsomes. J Pharmacol Exp Ther. 1999;289(1):31–37.

a-90. Smith BJ, Doran AC, McLean S, Tingley FD, 3rd, O'Neill BT, Kajiji SM. P-glycoprotein efflux at the blood-brain barrier mediates differences in brain disposition and pharmacodynamics between two structurally related neurokinin-1 receptor antagonists. J Pharmacol Exp Ther. 2001;298(3):1252–1259.

a-91. Zhang H, Coville PF, Walker RJ, Miners JO, Birkett DJ, Wanwimolruk S. Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine. Br J Clin Pharmacol. 1997;43(3):245–252.

a-92. Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res. 2002;19(6):765–772.

a-93. Horie K, Tang F, Borchardt RT. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res. 2003;20(2):161–168.

a-94. Fang J, Bourin M, Baker GB. Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4. Naunyn Schmiedebergs Arch Pharmacol. 1999;359(2):147–151.

a-95. Kumar S, Kwei GY, Poon GK, Iliff SA, Wang Y, Chen Q, et al. Pharmacokinetics and interactions of a novel antagonist of chemokine receptor 5 (CCR5) with ritonavir in rats and monkeys: role of CYP3A and P-glycoprotein. J Pharmacol Exp Ther. 2003;304(3):1161–1171.

a-96. Cazali N, Tran A, Treluyer JM, Rey E, d'Athis P, Vincent J, et al. Inhibitory effect of stiripentol on carbamazepine and saquinavir metabolism in human. Br J Clin Pharmacol. 2003;56(5):526–536.

a-97. Warrington JS, Shader RI, von Moltke LL, Greenblatt DJ. In vitro biotransformation of sildenafil (Viagra): identification of human cytochromes and potential drug interactions. Drug Metab Dispos. 2000;28(4):392–397.

a-98. Walker DK, Ackland MJ, James GC, Muirhead GJ, Rance DJ, Wastall P, et al. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica. 1999;29(3):297–310.

a-99. Nichols DJ, Muirhead GJ, Harness JA. Pharmacokinetics of sildenafil after single oral doses in healthy male subjects: absolute bioavailability, food effects and dose proportionality. Br J Clin Pharmacol. 2002;53 Suppl 1(5S-12S.

a-100. Kamdem LK, Streit F, Zanger UM, Brockmoller J, Oellerich M, Armstrong VW, et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem. 2005;51(8):1374–1381.

a-101. Draft Guidance / Drug Interaction Studies-Study Design, Data Analysis, and Implications for Dosing and Labeling U.S. Food and Drug Administraion; 2006.

a-102. Westphal K, Weinbrenner A, Giessmann T, Stuhr M, Franke G, Zschiesche M, et al. Oral bioavailability of digoxin is enhanced by talinolol: evidence for involvement of intestinal P-glycoprotein. Clin Pharmacol Ther. 2000;68(1):6–12.

a-103. Berthou F, Dreano Y, Belloc C, Kangas L, Gautier JC, Beaune P. Involvement of cytochrome P450 3A enzyme family in the major metabolic pathways of toremifene in human liver microsomes. Biochem Pharmacol. 1994;47(10):1883–1895.

a-104. Rao US, Fine RL, Scarborough GA. Antiestrogens and steroid hormones: substrates of the human P-glycoprotein. Biochem Pharmacol. 1994;48(2):287–292.

a-105. Zalma A, von Moltke LL, Granda BW, Harmatz JS, Shader RI, Greenblatt DJ. In vitro metabolism of trazodone by CYP3A: inhibition by ketoconazole and human immunodeficiency viral protease inhibitors. Biol Psychiatry. 2000;47(7):655–661.

a-106. Iwatsubo T, Hirota N, Ooie T, Suzuki H, Shimada N, Chiba K, et al. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther. 1997;73(2):147–171.

a-107. Borgnia MJ, Eytan GD, Assaraf YG. Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem. 1996;271(6):3163–3171.

a-108. Bomsien S, Skopp G. An in vitro approach to potential methadone metabolic-inhibition interactions. Eur J Clin Pharmacol. 2007;63(9):821–827.

a-109. Interview form of Solanax Tablets 4th ed. Tokyo, Japan.: Pfizer Japan Inc.; 2008.

a-110. Interview form of Lipitor Tablets 15th ed. Tokyo, Japan: Astellas Pharma Inc. ; 2007.

a-111. Dockens RC, Salazar DE, Fulmor IE, Wehling M, Arnold ME, Croop R. Pharmacokinetics of a newly identified active metabolite of buspirone after administration of buspirone over its therapeutic dose range. J Clin Pharmacol. 2006;46(11):1308–1312.

a-112. Nakashima M, Kanemaru M, Takiguchi Y, Mizuno A. Phase I Study of NBP-582 (Celiprolol). Rinsyoiyaku. 1988;4(7):1075–1090.

a-113. Girre C, Thomas G, Scherrmann JM, Crouzette J, Fournier PE. Model-independent pharmacokinetics of colchicine after oral administration to healthy volunteers. Fundam Clin Pharmacol. 1989;3(5):537–543.

a-114. Davey RT, Jr., Chaitt DG, Reed GF, Freimuth WW, Herpin BR, Metcalf JA, et al. Randomized, controlled phase I/II, trial of combination therapy with delavirdine (U-90152S) and conventional nucleosides in human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother. 1996;40(7):1657–1664.

a-115. Interview form of Digosin 7th ed. Tokyo, Japan: Chugai Pharmaceutical co., ltd.; 2006.

a-116. Josefsson K, Bergan T, Magni L. Dose-related pharmacokinetics after oral administration of a new formulation of erythromycin base. Br J Clin Pharmacol. 1982;13(5):685–691.

a-117. Noda K, Fukuoka M, Komatsu H, Ariyoshi Y, Tanaka K, Nakajima H, et al. Phase I Clinical Study of 21-consecutive-day Oral Administration of Etoposide. Gantokagakuryoho. 1994;21(10):1633–1639.

a-118. Nakashima M, Kanamaru M, Ujita S, Shimizu H, Sakamoto M, Yokota N. Study on safety, pharmacodynamics and pharmacokinetics of felodipine following single oral administration in healthy adult male volunteers. Rinsyoiyaku. 1992;8(8):1763–1780.

a-119. Yeh KC, Deutsch PJ, Haddix H, Hesney M, Hoagland V, Ju WD, et al. Single-dose pharmacokinetics of indinavir and the effect of food. Antimicrob Agents Chemother. 1998;42(2):332–338.

a-120. Interview form of Stromectol Tablets 10th ed. Tokyo, Japan: Banyu Pharmaceutical Co., Ltd.; 2008.

a-121. Interview form of lansoprazole capsules 1st ed. Tokyo, Japan: Takata Seiyaku Co., Ltd; 2007.

a-122. Nakashima M, Kanamaru M, Uematsu T, Takayama F, Kamei K. Phase I Study of MK-954, a New Angiotensin II Receptor Antagonist : Results of Single Oral Administration. Jpn J Clin Pharmacol Ther. 1995;26(3):671–684.

a-123. Rohatagi S, Barth J, Mollmann H, Hochhaus G, Soldner A, Mollmann C, et al. Pharmacokinetics of methylprednisolone and prednisolone after single and multiple oral administration. J Clin Pharmacol. 1997;37(10):916–925.

a-124. Bornemann LD, Min BH, Crews T, Rees MM, Blumenthal HP, Colburn WA, et al. Dose dependent pharmacokinetics of midazolam. Eur J Clin Pharmacol. 1985;29(1):91–95.

a-125. Interview form of Viracept Tablets 2nd ed. Tokyo, Japan.: JapanTobacco inc.; 2005.

a-126. Schellens JH, Van Haelst IM, Houston JB, Breimer DD. Nonlinear first-pass metabolism of nifedipine in healthy subjects. Xenobiotica. 1991;21(4):547–555.

a-127. Interview form of Cobatesin Tablets 2nd ed. Fukui, Japan: Kobayashi Kako Co., Ltd.; 2005.

a-128. Sathirakul K, Chan C, Teng L, Bergstrom RF, Yeo KP, Wise SD. Olanzapine pharmacokinetics are similar in Chinese and Caucasian subjects. Br J Clin Pharmacol. 2003;56(2):184–187.

a-129. Interview form of Pollakisu 4th ed. Tokyo, Japan: sanofi-aventis K.K.; 2008.

a-130. Silke B, Lakhani ZM, Taylor SH. Pharmacokinetic and pharmacodynamic studies with prazosin in chronic heart failure. J Cardiovasc Pharmacol. 1981;3(2):329–335.

a-131. Sowunmi A, Salako LA. Effect of dose size on the pharmacokinetics of orally administered quinine. Eur J Clin Pharmacol. 1996;49(5):383–386.

a-132. Interview form of risperidone 2nd ed. Saitama, Japan: Nipro Genepha Corporation; 2009.

a-133. Hsu A, Granneman GR, Witt G, Locke C, Denissen J, Molla A, et al. Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother. 1997;41(5):898–905.

a-134. Schapiro JM, Winters MA, Stewart F, Efron B, Norris J, Kozal MJ, et al. The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients. Ann Intern Med. 1996;124(12):1039–1050.

a-135. Bekersky I, Dressler D, Mekki QA. Dose linearity after oral administration of tacrolimus 1-mg capsules at doses of 3, 7, and 10 mg. Clin Ther. 1999;21(12):2058–2064.

a-136. Wetterich U, Spahn-Langguth H, Mutschler E, Terhaag B, Rosch W, Langguth P. Evidence for intestinal secretion as an additional clearance pathway of talinolol enantiomers: concentration- and dose-dependent absorption in vitro and in vivo. Pharm Res. 1996;13(4):514–522.

a-137. Interview form of Fareston Tablets. Tokyo, Japan: Nippon Kayaku Co., Ltd.; 2008.

a-138. Interview form of Desyrel Tablets 3rd ed. Tokyo, Japan: Pfizer Inc.; 2008.

a-139. Greenblatt DJ, von Moltke LL, Harmatz JS, Counihan M, Graf JA, Durol AL, et al. Inhibition of triazolam clearance by macrolide antimicrobial agents: in vitro correlates and dynamic consequences. Clin Pharmacol Ther. 1998;64(3):278–285.

a-140. Greenblatt DJ, Wright CE, von Moltke LL, Harmatz JS, Ehrenberg BL, Harrel LM, et al. Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther. 1998;64(3):237–247.

a-141. Greenblatt DJ, Harmatz JS, von Moltke LL, Ehrenberg BL, Harrel L, Corbett K, et al. Comparative kinetics and dynamics of zaleplon, zolpidem, and placebo. Clin Pharmacol Ther. 1998;64(5):553–561.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tachibana, T., Kato, M. & Sugiyama, Y. Prediction of Nonlinear Intestinal Absorption of CYP3A4 and P-Glycoprotein Substrates from their In Vitro Km Values. Pharm Res 29, 651–668 (2012). https://doi.org/10.1007/s11095-011-0579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0579-2

KEY WORDS

Navigation