Skip to main content

Advertisement

Log in

Polymeric Micelles of PEG-PLA Copolymer as a Carrier for Salinomycin Against Gemcitabine-Resistant Pancreatic Cancer

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Resistance to gemcitabine in pancreatic cancer (PC) may account for the failure of conventional treatments. Recently, salinomycin (SAL) has been identified as selective inhibitor of cancer stem cells (CSCs). In our study, we aimed to deliver SAL to gemcitabine-resistant PC by the aid of poly ethylene glycol-b-poly lactic acid (PEG-b-PLA) polymeric micelles (PMs).

Methods

SAL-loaded PMs were prepared and investigated in terms of pharmaceutical properties. MTT and Annexin V/PI assays were used to study cell proliferation and apoptosis in AsPC-1 cells in response to treatment with SAL micellar formulations. Alterations in CSC phenotype, invasion strength, and mRNA expression of epithelial mesenchymal transition (EMT) markers were also determined in the treated cells. In vivo antitumor study was performed in Balb/c AsPC-1 xenograft mice.

Results

PM formulations of SAL were prepared in suitable size and loading traits. In gemcitabine-resistant AsPC-1 cells, SAL was found to significantly increase cell mortality and apoptosis. It was also observed that SAL micellar formulations inhibited invasion and harnessed EMT in spite of induced expression of Snail. The in vivo antitumor experiment showed significant tumor eradication and the highest survival probability in mice treated with SAL PMs.

Conclusions

The obtained results showed the efficacy of SAL nano-formulation against PC tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CMC:

Critical micelle concentration

CSCs:

Cancer stem cells

DLS:

Dynamic light scattering

EE:

Entrapment efficiency

EMT:

Epithelial to mesenchymal transition

EPR:

Enhanced permeability and retention

FBS:

Fetal bovine serum

HPLC:

High performance liquid chromatography

IC50% :

50% inhibitory concentration

LD:

Loading density

MTT:

3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide

NP:

Nanoparticle

PBS:

Phosphate buffered saline

PC:

Pancreatic cancer

PDI:

Polydispersity index

PEG-b-PLA:

Poly ethylene glycol-b-poly lactic acid

PI:

Propidium iodide

PMs:

Polymeric micelles

RT-PCR:

Real-time polymerase chain reaction

SAL:

Salinomycin

TEM:

Transmission electron microscopy

THF:

Tetrahydrofuran

REFERENCES

  1. Holly EA, Chaliha I, Bracci PM, Gautam M. Signs and symptoms of pancreatic cancer: a population-based case–control study in the San Francisco Bay area. Clin Gastroenterol Hepatol. 2004;2(6):510–7.

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.

    Article  PubMed  Google Scholar 

  3. Heinemann V. Gemcitabine: progress in the treatment of pancreatic cancer. Oncology. 2000;60(1):8–18.

    Article  CAS  Google Scholar 

  4. Brusa P, Immordino ML, Rocco F, Cattel L. Antitumor activity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. Anticancer Res. 2007;27(1A):195–9.

    CAS  PubMed  Google Scholar 

  5. Hung SW, Mody HR, Govindarajan R. Overcoming nucleoside analog chemoresistance of pancreatic cancer: a therapeutic challenge. Cancer Lett. 2012;320(2):138–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138(5):822–9.

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett. 2013;338(1):94–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Javle M, Gibbs J, Iwata K, Pak Y, Rutledge P, Yu J, et al. Epithelial-mesenchymal transition (EMT) and activated extracellular signal-regulated kinase (p-Erk) in surgically resected pancreatic cancer. Ann Surg Oncol. 2007;14(12):3527–33.

    Article  CAS  PubMed  Google Scholar 

  9. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):4741–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59.

    Article  CAS  PubMed  Google Scholar 

  11. Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. BioMed Res. Int. 2012;2012.

  12. Zhang G-N, Liang Y, Zhou L-J, Chen S-P, Chen G, Zhang T-P, et al. Combination of salinomycin and gemcitabine eliminates pancreatic cancer cells. Cancer Lett. 2011;313(2):137–44.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao P, Dong S, Bhattacharyya J, Chen M. iTEP nanoparticle-delivered salinomycin displays an enhanced toxicity to cancer stem cells in orthotopic breast tumors. Mol Pharm. 2014;11(8):2703–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  15. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim S-B, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 2008;108(2):241–50.

    Article  CAS  PubMed  Google Scholar 

  16. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1):191–202.

    Article  CAS  PubMed  Google Scholar 

  17. Daman Z, Ostad S, Amini M, Gilani K. Preparation, optimization and< i> in</i>< i> vitro</i> characterization of stearoyl-gemcitabine polymeric micelles: a comparison with its self-assembled nanoparticles. Int J Pharm. 2014;468(1):142–51.

    Article  CAS  PubMed  Google Scholar 

  18. Guglielmo Dusi VG. Liquid chromatography with ultraviolet detection of lasalocid, monensin, salinomycin and narasin in poultry feeds using pre-column derivatization. J Chromatogr A. 1999;835(1–2):243–6.

    Article  Google Scholar 

  19. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36. Comparative Study.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010;7(3):163–72.

    Article  CAS  PubMed  Google Scholar 

  21. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009;69(14):5820–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. National Centre for the Replacement Refinement & Reduction of Animals in Research. Mouse: Decision tree for blood sampling. 2014. Available from: http://www.nc3rs.org.uk/mouse-decision-tree-blood-sampling.

  23. Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnology: Springer; 2010. p. 25–37.

  24. Rijcken C, Soga O, Hennink W, Van Nostrum C. Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery. J Control Release. 2007;120(3):131–48.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Liu J. Tumor stroma as targets for cancer therapy. Pharmacol Ther. 2013;137(2):200–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods. 1995;184(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  27. He L, Wang F, Dai W-Q, Wu D, Lin C-L, Wu S-M, et al. Mechanism of action of salinomycin on growth and migration in pancreatic cancer cell lines. Pancreatology. 2013;13(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  28. Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H. Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int. 2007;6(1):92–7.

    CAS  PubMed  Google Scholar 

  29. Dong T-T, Zhou H-M, Wang L-L, Feng B, Lv B, Zheng M-H. Salinomycin selectively targets ‘CD133+’ cell subpopulations and decreases malignant traits in colorectal cancer lines. Ann Surg Oncol. 2011;18(6):1797–804.

    Article  PubMed  Google Scholar 

  30. Zavadil J, Bitzer M, Liang D, Yang Y-C, Massimi A, Kneitz S, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc Natl Acad Sci. 2001;98(12):6686–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9.

    Article  CAS  PubMed  Google Scholar 

  32. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005;24(14):2375–85.

    Article  CAS  PubMed  Google Scholar 

  33. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7(6):1267–78.

    Article  CAS  PubMed  Google Scholar 

  34. Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(3):499–511.

    Article  PubMed  Google Scholar 

  35. Du Z, Qin R, Wei C, Wang M, Shi C, Tian R, et al. Pancreatic cancer cells resistant to chemoradiotherapy rich in “stem-cell-like” tumor cells. Dig Dis Sci. 2011;56(3):741–50.

    Article  CAS  PubMed  Google Scholar 

  36. Ivaska J, Pallari H-M, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res. 2007;313(10):2050–62.

    Article  CAS  PubMed  Google Scholar 

  37. Fuyuhiro Y, Yashiro M, Noda S, Kashiwagi S, Matsuoka J, Doi Y, et al. Clinical significance of vimentin-positive gastric cancer cells. Anticancer Res. 2010;30(12):5239–43.

    PubMed  Google Scholar 

  38. Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, et al. Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci. 2000;113(13):2455–62.

    CAS  PubMed  Google Scholar 

  39. Bae K-M, Su Z, Frye C, McClellan S, Allan RW, Andrejewski JT, et al. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J Urol. 2010;183(5):2045–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kuo SZ, Blair KJ, Rahimy E, Kiang A, Abhold E, Fan J-B, et al. Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt. BMC Cancer. 2012;12(1):556.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials. 2012;33(2):679–91.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We would like to express our profound thanks to Dr. Babak Paknejad for his assistance in animal experiments. This work is a part of the PhD project of first author and was financially supported by a grant numbered 91-03-33-19300 from Tehran University of Medical Sciences and Health Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambiz Gilani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daman, Z., Montazeri, H., Azizi, M. et al. Polymeric Micelles of PEG-PLA Copolymer as a Carrier for Salinomycin Against Gemcitabine-Resistant Pancreatic Cancer. Pharm Res 32, 3756–3767 (2015). https://doi.org/10.1007/s11095-015-1737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1737-8

KEY WORDS

Navigation