Skip to main content

Advertisement

Log in

Coupling proximal sensing, seasonal forecasts and crop modelling to optimize nitrogen variable rate application in durum wheat

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Nitrogen (N) fertilization in durum wheat has traditionally been managed based on yield goals without considering temporal and spatial variability of yield potential related to changes in soil properties, weather and crop response to fertilization. In fact, this approach may lead to inefficient N use by the crop, resulting in both economic losses and environmental issues. To overcome these drawbacks, several optical-oriented, site-specific management systems have been developed to consider the effect of the aforementioned sources of variability and modulate N applications to the actual crop nutrient status and requirements. In this study, a novel approach that integrates proximal sensing, seasonal weather forecasts and crop modelling to manage site-specific N fertilization in durum wheat is proposed. This approach is based on four successive steps: (1) optimal N supply is estimated by means of a crop model fed with a mix of observed and forecast weather data; (2) actual crop N uptake is estimated using proximal sensing; (3) N prescription maps are created merging crop model and proximal sensing information; (4) N-Variable Rate Application (N-VRA). The aforementioned approach was implemented in a 13.6-ha field characterized by large soil variability in texture and organic matter content. Results indicated that the system was able to capture spatial variability in crop N uptake and manage N distribution through N-VRA leading to a substantial reduction of the spatial variability in yield and protein content while reducing the total amount of N supplied compared to uniform treatments. However, further advances are necessary to improve model performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnall, D. B., Mallarino, A. P., Ruark, M. D., Varvel, G. E., Solie, J. B., Stone, M. L., et al. (2013). Relationship between grain crop yield potential and nitrogen response. Agronomy Journal, 105(5), 1335–1344.

    Article  CAS  Google Scholar 

  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., et al. (2014). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147.

    Article  Google Scholar 

  • Asseng, S., McIntosh, P. C., Wang, G., & Khimashia, N. (2012). Optimal N fertiliser management based on a seasonal forecast. European Journal of Agronomy, 38, 66–73.

    Article  CAS  Google Scholar 

  • Baigorria, G. A., Jones, J. W., & O’Brien, J. J. (2008). Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model. Agricultural and Forest Meteorology, 148(8–9), 1353–1361.

    Article  Google Scholar 

  • Bannayan, M., & Hoogenboom, G. (2009). Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Research, 111, 290–302.

    Article  Google Scholar 

  • Basso, B., Dumont, B., Cammarano, D., Pezzuolo, A., Marinello, F., & Sartori, L. (2016). Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Science of The Total Environment, 545–546, 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Basso, B., & Liu, L. (2019). Seasonal crop yield forecast: Methods, applications, and accuracies. In D. L. Sparks (Ed.), Advances in agronomy (pp. 201–255). Cambridge, MA, USA: Academic Press.

    Google Scholar 

  • Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Bertheloot, J., Martre, P., & Andrieu, B. (2008). Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiology, 148(3), 1707–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, J. N., Hochman, Z., Holzworth, D., & Horan, H. (2018). Seasonal climate forecasts provide more definitive and accurate crop yield predictions. Agricultural and Forest Meteorology, 260–261, 247–254.

    Article  Google Scholar 

  • Chiericati, M., Morari, F., Sartori, L., Ortiz, B., Perry, C., & Vellidis, G. (2007). Delineating management zones to apply site-specific irrigation in the Venice lagoon watershed. In J. V. Stafford (Ed.), Precision agriculture ’07. Proceedings of the 6th European conference on precision agriculture (pp. 599–605). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Chung, B., Girma, K., Raun, W. R., & Solie, J. B. (2010). Changes in response indices as a function of time in winter wheat. Journal of Plant Nutrition, 33(6), 796–808.

    Article  CAS  Google Scholar 

  • Colaço, A. F., & Bramley, R. G. V. (2018). Do crop sensors promote improved nitrogen management in grain crops? Field Crops Research, 218, 126–140.

    Article  Google Scholar 

  • Crain, J. L., Waldschmidt, K. M., & Raun, W. R. (2013). Small-scale spatial variability in winter wheat production. Communications in Soil Science and Plant Analysis, 44(19), 2830–2838.

    Article  CAS  Google Scholar 

  • Dalla Marta, A., Orlando, F., Mancini, M., Guasconi, F., Motha, R., Qu, J., et al. (2015). A simplified index for an early estimation of durum wheat yield in Tuscany (Central Italy). Field Crops Research, 170, 1–6.

    Article  Google Scholar 

  • DGR 1150/2011 Programma d’azione per le zone vulnerabili ai nitrati del Veneto (Action Programme for Nitrate Vulnerable Zones in Veneto). Bur n. 61, 16/08/2011, Venezia, (IT): Giunta regionale del Veneto.

  • Diacono, M., Castrignanò, A., Troccoli, A., De Benedetto, D., Basso, B., & Rubino, P. (2012). Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multivariate geostatistical approach. Field Crops Research, 131, 49–62.

    Article  Google Scholar 

  • Dusadeerungsikul, P. O., Liakos, V., Morari, F., Nof, S. Y., & Bechar, A. (2020). Smart action. In A. Castrignanò, G. Buttafuoco, R. Khosla, A. M. Mouazen, D. Moshou, & O. Naud (Eds.), Agricultural Internet of things and decision support for precision smart farming (pp. 225–277). London, UK: Academic Press.

    Chapter  Google Scholar 

  • EC-Council Directive, 1991. Council Directive 91/676/EEC Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources.

  • Erdle, K., Mistele, B., & Schmidhalter, U. (2011). Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Research, 124(1), 74–84.

    Article  Google Scholar 

  • Fang, H., Liang, S., & Hoogenboom, G. (2011). Integration of MODIS LAI and vegetation index products with the CSM–CERES–maize model for corn yield estimation. International Journal of Remote Sensing, 32(4), 1039–1065.

    Article  Google Scholar 

  • Ferrise, R., Moriondo, M., & Bindi, M. (2011). Probabilistic assessments of climate change impacts on durum wheat in the Mediterranean region. Natural Hazards and Earth System Science, 11(5), 1293–1302.

    Article  Google Scholar 

  • Ferrise, R., Toscano, P., Pasqui, M., Moriondo, M., Primicerio, J., Semenov, M., et al. (2015). Monthly-to-seasonal predictions of durum wheat yield over the Mediterranean Basin. Climate Research, 65, 7–21.

    Article  Google Scholar 

  • Ferrise, R., Triossi, A., Stratonovitch, P., Bindi, M., & Martre, P. (2010). Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat: An experimental and simulation study. Field Crops Research, 117(2–3), 245–257.

    Article  Google Scholar 

  • Franzen, D. W., & Peck, T. R. (1993). Soil sampling for variable rate fertilization. In R. G. Hoeft (Ed.), Proceedings of illinois fertilizer conference (pp. 81–90). Urbana, IL, USA: University of Illinois, Cooperative Extension Service.

    Google Scholar 

  • Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management zone analyst (MZA). Agronomy Journal, 96(1), 100–108.

    Article  Google Scholar 

  • Girma, K., Holtz, S. L., Arnall, D. B., Fultz, L. M., Hanks, T. L., Lawles, K. D., et al. (2007). Weather, fertilizer, previous year yield, and fertilizer levels affect ensuing year fertilizer response of wheat. Agronomy Journal, 99(6), 1607–1614.

    Article  CAS  Google Scholar 

  • Hansen, J., Challinor, A., Ines, A., Wheeler, T., & Moron, V. (2006). Translating climate forecasts into agricultural terms: Advances and challenges. Climate Research, 33, 27–41.

    Article  Google Scholar 

  • Hansen, J. W., & Indeje, M. (2004). Linking dynamic seasonal climate forecasts with crop simulation for maize yield prediction in semi-arid Kenya. Agricultural and Forest Meteorology, 125(1–2), 143–157.

    Article  Google Scholar 

  • Hatfield, J. L., Kanemasu, E. T., Asrar, G., Jackson, R. D., Pinter, P. J., Reginato, R. J., et al. (1986). Leaf-area estimates from spectral measurements over various planting dates of wheat. International Journal of Remote Sensing, 6, 167–175.

    Article  Google Scholar 

  • Heege, H. J. (2013). Site-specific fertilizing. In H. J. Heege (Ed.), Precision in crop farming (pp. 193–271). Dordrecht, NL: Springer.

    Chapter  Google Scholar 

  • Holland, K. H., & Schepers, J. S. (2010). Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agronomy Journal, 102(5), 1415–1424.

    Article  Google Scholar 

  • Holland, K. H., & Schepers, J. S. (2013). Use of a virtual-reference concept to interpret active crop canopy sensor data. Precision Agriculture, 14(1), 71–85.

    Article  Google Scholar 

  • Hornung, A., Khosla, R., Reich, R., & Westfall, D. G. (2003). Evaluation of site-specific management zones: Grain yield and nitrogen use efficiency. In J. Stafford & A. Werner (Eds.), Precision agriculture proceedings of the 3rd European conference on precision agriculture (pp. 297–302). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Huang, Y., Zhu, Y., Li, W., Cao, W., & Tian, Y. (2013). Assimilating remotely sensed information with the wheatgrow model based on the ensemble square root filter for improving regional wheat yield forecasts. Plant Production Science, 16(4), 352–364.

    Article  Google Scholar 

  • Ines, A. V., Das, N. N., Hansen, J. W., & Njoku, E. G. (2013). Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sensing of Environment, 138, 149–164.

    Article  Google Scholar 

  • Jamieson, P. D., & Semenov, M. A. (2000). Modelling nitrogen uptake and redistribution in wheat. Field Crops Research, 68(1), 21–29.

    Article  Google Scholar 

  • Jamieson, P. D., Semenov, M. A., Brooking, I. R., & Francis, G. S. (1998). Sirius: A mechanistic model of wheat response to environmental variation. European Journal of Agronomy, 8, 161–179.

    Article  Google Scholar 

  • Johnson, G. V., & Raun, W. R. (2003). Nitrogen response index as a guide to fertilizer management. Journal of Plant Nutrition, 26(2), 249–262.

    Article  CAS  Google Scholar 

  • Jones, C. A., & Kiniry, J. R. (1986). CERES-maize: A simulation model of maize growth and development. College Station, TX, USA: Texas A&M University Press.

    Google Scholar 

  • Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New method for the determination of nitrogen in organic substances). Zeitschrift für Analytische Chemie, 22, 366–382.

    Article  Google Scholar 

  • Lawless, C., & Semenov, M. A. (2005). Assessing lead-time for predicting wheat growth using a crop simulation model. Agricultural and Forest Meteorology, 135(1–4), 302–313.

    Article  Google Scholar 

  • Li, F., Gnyp, M. L., Jia, L., Miao, Y., Yu, Z., Koppe, W., et al. (2008). Estimating N status of winter wheat using a handheld spectrometer in the North China Plain. Field Crops Research, 106(1), 77–85.

    Article  Google Scholar 

  • Lukina, E. V., Freeman, K. W., Wynn, K. J., Thomason, W. E., Mullen, R. W., Stone, M. L., et al. (2001). Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. Journal of Plant Nutrition, 24(6), 885–898.

    Article  CAS  Google Scholar 

  • Marletto, V., Ventura, F., Fontana, G., & Tomei, F. (2007). Wheat growth simulation and yield prediction with seasonal forecasts and a numerical model. Agricultural and Forest Meteorology, 147(1–2), 71–79.

    Article  Google Scholar 

  • Martre, P., Jamieson, P. D., Semenov, M. A., Zyskowski, R. F., Porter, J. R., & Triboi, E. (2006). Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. European Journal of Agronomy, 25(2), 138–154.

    Article  CAS  Google Scholar 

  • Mishra, N., Prodhomme, C., & Guemas, V. (2019). Multi-model skill assessment of seasonal temperature and precipitation forecasts over Europe. Climate Dynamics, 52(7–8), 4207–4225.

    Article  Google Scholar 

  • Morari, F. (2010). Sud-project 2. Crop rotation and fertilisation. Action 2: Evaluation at the farm scale. Identification of innovative cropping systems in Venice lagoon watershed. Summary results (pp. 37–48). Legnaro, Padova, Italy: Veneto Agricoltura (in Italian).

    Google Scholar 

  • Morari, F., Zanella, V., Sartori, L., Visioli, G., Berzaghi, P., & Mosca, G. (2018). Optimising durum wheat cultivation in North Italy: Understanding the effects of site-specific fertilization on yield and protein content. Precision Agriculture, 19(2), 257–277.

    Article  Google Scholar 

  • Nawar, S., Corstanje, R., Halcro, G., Mulla, D., & Mouazen, A. (2017). Chapter four. Delineation of soil management zones for variable rate fertilization: A review. Advances in Agronomy, 143, 175e245.

    Google Scholar 

  • Pavan, V., & Doblas-Reyes, F. J. (2013). Calibrated multi-model ensemble summer temperature predictions over Italy. Climate Dynamics, 41(7–8), 2115–2132.

    Article  Google Scholar 

  • Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. Advances in Agronomy, 67, 1–85.

    Article  Google Scholar 

  • Porter, J. R., Challinor, A. J., Henriksen, C. B., Howden, S. M., Martre, P., & Smith, P. (2019). Invited review: Intergovernmental Panel on Climate Change, agriculture, and food—A case of shifting cultivation and history. Global Change Biology, 25(8), 2518–2529.

    Article  PubMed  Google Scholar 

  • Prudnikova, E., Savin, I., Vindeker, G., Grubina, P., Shishkonakova, E., & Sharychev, D. (2019). Influence of soil background on spectral reflectance of winter wheat crop canopy. Remote Sensing, 11, 1932.

    Article  Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Lukina, E. V., Thomason, W. E., et al. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93(1), 131–138.

    Article  Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.

    Article  Google Scholar 

  • Raun, W. R., Solie, J. B., & Stone, M. L. (2011). Independence of yield potential and crop nitrogen response. Precision Agriculture, 12(4), 508–518.

    Article  Google Scholar 

  • Raun, W. R., Solie, J. B., Stone, M. L., Martin, K. L., Freeman, K. W., Mullen, R. W., et al. (2005). Optical sensor-based algorithm for crop nitrogen fertilization. Communications in Soil Science and Plant Analysis, 36(19–20), 2759–2781.

    Article  CAS  Google Scholar 

  • Rodriguez, D., de Voil, P., Hudson, D., Brown, J. N., Hayman, P., Marrou, H., et al. (2018). Predicting optimum crop designs using crop models and seasonal climate forecasts. Scientific Reports, 8(1), 2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samborski, S. M., Gozdowski, D., Stępień, M., Walsh, O. S., & Leszczyńska, E. (2016). On-farm evaluation of an active optical sensor performance for variable nitrogen application in winter wheat. European Journal of Agronomy, 74, 56–67.

    Article  Google Scholar 

  • Sartori, L. (2010). Sud-project 3. Precision agriculture and conservation agriculture. Action 1: Precision agriculture. In Identification of innovative cropping systems in Venice lagoon watershed. Summary results (pp. 67–76). Legnaro, Padova, Italy: Veneto Agricoltura (in Italian).

    Google Scholar 

  • Scharf, P. C., Kitchen, N. R., Sudduth, K. A., Davis, J. G., Hubbard, V. C., & Lory, J. A. (2005). Field-scale variability in optimal nitrogen fertilizer rate for corn. Agronomy Journal, 97(2), 452–461.

    Article  Google Scholar 

  • Scudiero, E., Teatini, P., Manoli, G., Braga, F., Skaggs, T. H., & Morari, F. (2018). Workflow to establish time-specific zones in precision agriculture by spatiotemporal integration of plant and soil sensing data. Agronomy, 8, 253.

    Article  Google Scholar 

  • Semenov, M. A., & Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Climatic change, 35(4), 397–414.

    Article  Google Scholar 

  • Semenov, M. A., & Doblas-Reyes, F. J. (2007). Utility of dynamical seasonal forecasts in predicting crop yield. Climate Research, 34(1), 71–81.

    Article  Google Scholar 

  • Shin, D. W., Baigorria, G. A., Lim, Y.-K., Cocke, S., LaRow, T. E., O’Brien, J. J., et al. (2010). Assessing maize and peanut yield simulations with various seasonal climate data in the southeastern United States. Journal of Applied Meteorology and Climatology, 49(4), 592–603.

    Article  Google Scholar 

  • Soil Survey Staff. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, second edition. Agriculture handbook, USDA n. 436. Natural Resources Conservation Service. Washington, DC, USA: US Government Printing Office.

    Google Scholar 

  • Solie, J. B., Raun, W. R., & Stone, M. L. (1999). Submeter spatial variability of selected soil and bermudagrass production variables. Soil Science Society of America Journal, 63(6), 1724–1733.

    Article  CAS  Google Scholar 

  • Stone, M. L., Solie, J. B., Raun, W. R., Whimey, R. W., Taylor, S. L., & Ringa, J. D. (1996). Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of the ASAE, 39, 1623–1631.

    Article  Google Scholar 

  • Tao, F., Rötter, R. P., Palosuo, T., Díaz-Ambrona, C. G. H., Mínguez, M. I., Semenov, M. A., et al. (2017). Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 82, 144–162.

    Article  Google Scholar 

  • Thorp, K. R., Hunsaker, D. J., & French, A. N. (2010). Assimilating leaf area index estimates from remote sensing into the simulations of a cropping systems model. Transactions of the ASABE, 53(1), 251–262.

    Article  Google Scholar 

  • Vazifedoust, M., Van Dam, J. C., Bastiaanssen, W. G. M., & Feddes, R. A. (2009). Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. International Journal of Remote Sensing, 30(10), 2523–2545.

    Article  Google Scholar 

  • Vermeulen, S. J., Aggarwal, P. K., Ainslie, A., Angelone, C., Campbell, B. M., Challinor, A. J., et al. (2012). Options for support to agriculture and food security under climate change. Environmental Science & Policy, 15(1), 136–144.

    Article  Google Scholar 

  • Visioli, G., Bonas, U., Cortivo, D., Pasini, C., Marmiroli, G., Mosca, N., et al. (2018). Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment. Journal of the Science of Food and Agriculture, 98(6), 2360–2369.

    Article  CAS  PubMed  Google Scholar 

  • Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thorburn, P. J., et al. (2018). Multimodel ensembles improve predictions of crop-environment-management interactions. Global Change Biology, 24(11), 5072–5083.

    Article  PubMed  Google Scholar 

  • Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., et al. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications. https://doi.org/10.1038/s41467-018-06525-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weisheimer, A., & Palmer, T. N. (2014). On the reliability of seasonal climate forecasts. Journal of The Royal Society Interface, 11(96), 20131162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wibawa, W. D., Dludlu, D. L., Swenson, L. J., Hopkins, D. G., & Dahnke, W. C. (1993). Variable fertilizer application based on yield goal, soil fertility, and soil map unit. Journal of Production Agriculture, 6(2), 255–261.

    Article  Google Scholar 

  • Yao, F., Tang, Y., Wang, P., & Zhang, J. (2015). Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain. Physics and Chemistry of the Earth, Parts A/B/C, 87, 142–152.

    Article  Google Scholar 

  • Zanella, V., Ortiz, B. V., Thorp, K., Morari, F., Mosca, G., & Hoogenboom, G. (2015). Combining crop sensing and simulation modeling to assess within-field corn nitrogen stress. In J. V. Stafford (Ed.), Precision agriculture’15 Proceedings of the 10th European conference on precision agriculture (pp. 391–398). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Zinyengere, N., Mhizha, T., Mashonjowa, E., Chipindu, B., Geerts, S., & Raes, D. (2011). Using seasonal climate forecasts to improve maize production decision support in Zimbabwe. Agricultural and Forest Meteorology, 151(12), 1792–1799.

    Article  Google Scholar 

Cited website

  • www.agerborsamerci.it.

Download references

Acknowledgements

Research supported by Progetto AGER, Grant No. 2017–2194. The authors are grateful to Dr. Franco Gasparini and Mr Efrem Destro for the technical assistance provided during the field experiment, and Mr Giacomo Trombi for the support granted during the modelling phase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Morari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morari, F., Zanella, V., Gobbo, S. et al. Coupling proximal sensing, seasonal forecasts and crop modelling to optimize nitrogen variable rate application in durum wheat. Precision Agric 22, 75–98 (2021). https://doi.org/10.1007/s11119-020-09730-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-020-09730-6

Keywords

Navigation