Skip to main content
Log in

Papaver rhoeas L. mapping with cokriging using UAV imagery

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Accurately mapping the spatial distribution of weeds within a field is a first step towards effective Site-specific Weed Management. The main objective of this study was to investigate if the multivariate geostatistical method of cokriging (COK) can be used to improve the accuracy of Papaver rhoeas L. infestations maps in winter wheat fields using high-resolution UAV imagery as ancillary information. The primary variable was obtained by intensive grid weed density field samplings and the secondary variables were derived from the UAV imagery taken the same day as the weed field samplings (e.g. wavebands and derivative products, such as band ratios and vegetation indexes). Univariate Ordinary Kriging (OK) and multivariate cokriging (COK) interpolation methods were used and compared for Papaver density mapping. The performances of the different methods were assessed by cross-validation. The results indicated that COK outperformed OK in the spatial interpolation of Papaver density. COK reduced the prediction errors and enhanced the accuracy of Papaver estimates maps. The best performances were obtained when COK was performed with the UAV-secondary variables that yielded the highest correlation with Papaver density and produced the strongest spatial cross-semivariograms. On average, the COK with UAV-derived ancillary variables improved the accuracy of mapping Papaver density by 11 to 21% compared with OK. The results suggest the great potential of high-resolution UAV imagery as a source of ancillary information to improve the accuracy of spatial mapping of sparsely sampled target variables using COK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adjorlolo, C., & Mutanga, O. (2013). Integrating remote sensing and geostatistics to estimate woody vegetation in an African savanna. Journal of Spatial Science, 58(2), 305–322.

    Article  Google Scholar 

  • Barrero, O., & Perdomo, S. A. (2018). RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields. Precision Agriculture. https://doi.org/10.1007/s11119-017-9558-x.

    Article  Google Scholar 

  • Barroso, J., Fernández-Quintanilla, C., Ruiz, D., Hernaiz, P., & Rew, R. J. (2004). Spatial stability of Avena sterilis ssp. ludoviciana populations under annual. Weed Research, 44(3), 178–186.

    Article  Google Scholar 

  • Barroso, J., Ruiz, D., Fernandez-Quintanilla, C., Leguizamon, E. S., Hernaiz, P., Ribeiro, A., et al. (2005). Comparison of sampling methodologies for site-specific management of Avena sterilis. Weed Research, 45(2), 165–174.

    Article  Google Scholar 

  • Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., et al. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40(1), 1–20.

    Article  Google Scholar 

  • Blanco-Moreno, J. M., Chamorro, L., & Sans, F. X. (2006). Spatial and temporal patterns of Lolium rigidumAvena sterilis mixed populations in a cereal field. Weed Research, 46(3), 207–218.

    Article  Google Scholar 

  • Camargo-Neto, J. (2004). A combined statistical—soft computing approach for classification and mapping weed species in minimum tillage systems. Lincoln, NE: University of Nebraska.

    Google Scholar 

  • Cambardella, C. A., & Karlen, D. L. (1999). Spatial analysis of soil fertility parameters. Precision Agriculture, 1(1), 5–11.

    Article  Google Scholar 

  • Cantero-Martínez, C., Angás, P., & Lampurlanés, J. (2007). Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Annals of Applied Biology, 150(3), 293–305.

    Article  Google Scholar 

  • Cardina, J., Jonson, G. A., & Sparrow, D. H. (1997). The nature and consequence of weed spatial distribution. Weed Science, 45(3), 364–373.

    Article  CAS  Google Scholar 

  • Castaldi, F., Pelosi, F., Pascucci, S., & Casa, R. (2017). Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize. Precision Agriculture, 18(1), 76–94.

    Article  Google Scholar 

  • Chilès, J. P., & Delfiner, P. (2012). Geostatistics: modeling spatial uncertainty (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Christensen, S., Søgaard, H. T., Kudsk, P., Nørremark, M., Lund, I., Nadimi, S., et al. (2009). Site specific weed control technologies. Weed Research, 49(3), 233–241.

    Article  Google Scholar 

  • Colbach, N., Forcella, F., & Johnson, G. A. (2000). Spatial and temporal stability of weed populations over five years. Weed Science, 48(3), 366–377.

    Article  CAS  Google Scholar 

  • De Castro, A. I., Torres-Sánchez, J., Peña, J. M., Jiménez-Brenes, F. M., Csillik, O., & López-Granados, F. (2018). An automatic random forest-OBIA algorithm for early weed mapping between and within crop Rows using UAV imagery. Remote Sensing, 10(2), 285. https://doi.org/10.3390/rs10020285.

    Article  Google Scholar 

  • Dille, J. A., Milner, M., Groeteke, J. J., Mortensen, D. A., & Williams, M. M. (2003). How good is your weed map? A comparison of spatial interpolators. Weed Science, 51(1), 44–55.

    Article  CAS  Google Scholar 

  • Donald, W. W. (1994). Geostatistics for mapping weeds, with a Canada thistle (Cirsium arvense) patch as a case study. Weed Science, 42(4), 648–657.

    Article  CAS  Google Scholar 

  • Emery, X. (2012). Cokriging random fields with means related by known linear combinations. Computers & Geosciences, 38(1), 136–144.

    Article  Google Scholar 

  • Everitt, J. H., & Villarreal, R. (1987). Detecting huisache (Acacia farnesiana) and mexican palo-verde (Parkinsonia aculeata) by aerial photography. Weed Science, 35, 427–432.

    Article  Google Scholar 

  • Gerhards, R., & Christensen, S. (2006). Site-Specific Weed Management. In A. Srinivasan (Ed.), Handbook of Precision Agriculture principles and Applications (pp. 185–206). New York: Food Products Press, The Haworth Press.

    Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Goovaerts, P. (2000). Geostatistical approches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1–2), 113–129.

    Article  Google Scholar 

  • Heisel, T., Andreasen, C., & Ersbøll, A. K. (1996). Annual weed densities can be mapped with kriging. Weed Research, 36(4), 325–337.

    Article  Google Scholar 

  • Heisel, T., Ersboll, A., & Andreasen, C. (1999). Weed mapping with co-kriging using soil properties. Precision Agriculture, 1(1), 39–52.

    Article  Google Scholar 

  • Hernández-Stefanoni, J. L., Gallardo-Cruz, J. A., Meave, J. A., & Dupuy, J. M. (2011). Combining geostatistical models and remotely sensed data to improve tropical tree richness mapping. Ecological Indicators, 11(5), 1046–1056.

    Article  Google Scholar 

  • Hevesi, J. A., Istok, J. D., & Flint, A. L. (1992). Precipitation estimation in mountains terrain using multivariate geostatistics Part I: structural analysis. Journal of Applied Meteorology, 31(1), 661–676.

    Article  Google Scholar 

  • Holm, L., Doll, J., Holm, E., Pancho, J., & Herbereger, J. (1997). Papaver rhoeas L. In John Wiley and Sons (Ed.), World weeds natural histories and distribution (pp. 555–561). New York: Academic Press.

    Google Scholar 

  • Huang, Y., Reddy, K. N., Fletcher, R. S., & Pennington, D. (2017). UAV low-altitude remote sensing for precision weed management. Weed Technology. https://doi.org/10.1017/wet.2017.89.

    Article  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford University.

    Google Scholar 

  • Izquierdo, J., Blanco-Moreno, J., Chamorro, L., Recasens, J., & Sans, F. (2009). Spatial distribution and temporal stability of prostrate knotweed (Polygonum aviculare) and corn poppy (Papaver rhoeas) Seed bank in a cereal field. Weed Science, 57(5), 505–511.

    Article  CAS  Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology, 50(4), 663–666.

    Article  Google Scholar 

  • Journel, A., & Huijbregts, C. (1978). Mining geostatistics. New York: Academic Press.

    Google Scholar 

  • Jurado-Expósito, M., López-Granados, F., García-Torres, L., García-Ferrer, A., Sánchez de la Orden, M., & Atenciano, S. (2003). Multi-species weed spatial variability and site-specific management maps in cultivated sunflower. Weed Science, 51(3), 319–328.

    Article  Google Scholar 

  • Jurado-Expósito, M., López-Granados, F., Peña-Barragán, J. M., & García-Torres, L. (2009). A digital elevation model to aid geostatistical mapping of weeds in sunflower crops. Agronomy for Sustainable Development, 29(2), 391–400.

    Article  Google Scholar 

  • Kalivas, D. P., Christos, E. V., Garifalia, E., & Paraskevi, D. (2012). Regional mapping of perennial weeds in cotton with the use of geostatistics. Weed Science, 60(2), 233–243.

    Article  CAS  Google Scholar 

  • Kerry, R., & Oliver, M. (2003). Variograms of ancillary data of aid sampling for soil surveys. Precision Agriculture, 4(3), 261–278.

    Article  Google Scholar 

  • Kumar, L., Schmidt, K. S., Dury, S., & Skidmore, A. K. (2001). Imaging spectrometry and vegetation science. In F. van der Meer & S. M. de Jong (Eds.), Imaging spectrometry (pp. 111–155). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Lambert, J. P. T., Hicks, H. L., Childs, D. Z., & Freckleton, R. P. (2018). Evaluating the potential of Unmanned Aerial Systems for mapping weeds at field scales: a case study with Alopecurus myosuroides. Weed Research, 58(1), 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6, 228–241.

    Article  Google Scholar 

  • López-Granados, F., Jurado-Expósito, M., Peña-Barragán, J. M., & García-Torres, L. (2005). Using geoestatistical and remote sensing approaches for mapping soil properties. European Journal of Agronomy, 23(3), 279–289.

    Article  Google Scholar 

  • López-Granados, F., Torres-Sánchez, J., De Castro, A. I., Serrano-Pérez, A., Mesas-Carrascosa, F. J., & Peña, J. M. (2016). Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery. Agronomy for Sustainable Development, 36, 67. https://doi.org/10.1007/s13593-016-0405-7.

    Article  Google Scholar 

  • Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., & Stachniss, C. (2017). UAV-based crop and weed classification for smart farming. In IEEE International Conference on Robotics and Automation (ICRA), 3024–3031, https://doi.org/10.1109/icra.2017.7989347.

  • Matheron, G. (1970). The theory of regionalized variables and its applications. Ecole Nationale Supérieure des Mine, 5, 212.

    Google Scholar 

  • Meng, Q. M., Cieszewski, C., & Madden, M. (2009). Large area forest inventory using Landsat ETM plus: A geostatistical approach. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 27–36.

    Article  Google Scholar 

  • Mesas-Carrascosa, F. J., Clavero-Rumbao, I., Torres-Sánchez, J., García-Ferrer, A., Peña, J. M., & López-Granados, F. (2017). Accurate ortho-mosaicked six-band multispectral UAV images as affected by mission planning for precision agriculture proposes. International Journal of Remote Sensing, 38(8–10), 2161–2176.

    Article  Google Scholar 

  • Mesas-Carrascosa, F. J., Torres-Sánchez, J., Clavero-Rumbao, I., García-Ferrer, A., Peña, J. M., Borra-Serrano, I., et al. (2015). Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management. Remote Sensing, 7(10), 12793–12814.

    Article  Google Scholar 

  • Meyer, G. E., Camargo-Neto, J., Jones, D. D., & Hindman, T. W. (2004). Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from colour images. Computers and Electronics in Agriculture, 42, 161–180.

    Article  Google Scholar 

  • Mutanga, O., & Rugege, D. (2006). Integrating remote sensing and spatial statistics to model biomass distribution in a tropical savanna. International Journal of Remote Sensing, 27(19), 3499–3514.

    Article  Google Scholar 

  • National Research Council. (1997). Precision agriculture in the 21st century: Geospatial and information technologies in crop management. Washington, DC: National Academy Press.

    Google Scholar 

  • Oliver, M. A. (2010). Geostatistical applications for precision agriculture. New York, NY: Springer.

    Book  Google Scholar 

  • Papritz, A., & Stein, A. (1999). Spatial prediction by linear kriging. In A. Stein (Ed.), Spatial statistics for remote sensing. Dordrecht: Kluwer.

    Google Scholar 

  • Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE, 8(10), e77151. https://doi.org/10.1371/journal.pone.0077151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen, J., Nielsen, J., Garcia-Ruiz, F., Christensen, S., & Streibig, J. C. (2013). Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Research, 53(4), 242–248.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the greant plains with ERTS. Proceedings of the Earth Resources Technology Satellite Symposium NASA SP-351, vol 1 (pp. 309–317). Washington, DC.

  • Schirrmann, M., Hamdorf, A., Giebel, A., Gleiniger, F., Pflanz, M., & Dammer, K. (2017). Regression kriging for improving crop height models fusing ultra-sonic Sensing with UAV imagery. Remote Sensing, 9, 665. https://doi.org/10.3390/rs9070665.

    Article  Google Scholar 

  • Simbahan, G. C., Dobermann, A., Goovearts, P., Ping, J., & Haddix, M. (2006). Fine resolution mapping of soil organic carbon based on multivariate secondary data. Geoderma, 132(3–4), 471–489.

    Article  CAS  Google Scholar 

  • Taberner, A., Anguera, R., Cirujeda, A., & Tarago, R. (2001). Situación actual de las resistencias de Lolium rigidum y Papaver rhoeas en cereales de invierno. Phytoma, 132, 33–35.

    Google Scholar 

  • Thenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158–182.

    Article  Google Scholar 

  • Torra, J., Cirujeda, A., Taberner, A., & Recasens, J. (2010). Evaluation of herbicides to manage herbicide-resistant corn poppy (Papaver rhoeas) in winter cereals. Crop Protection, 29(7), 731–736.

    Article  CAS  Google Scholar 

  • Torra, J., Gonzalez-Andujar, J. L., & Recasens, J. (2008). Modelling the population dynamics of Papaver rhoeas under various weed management systems in a Mediterranean climate. Weed Research, 48(2), 136–146.

    Article  Google Scholar 

  • Torra, J., & Recasens, J. (2008). Demography of corn poppy (Papaver rhoeas) in relation to emergence time and crop competition. Weed Science, 56(6), 826–833.

    Article  CAS  Google Scholar 

  • Torres-Sánchez, J., López-Granados, F., De Castro, A. I., & Peña-Barragán, J. M. (2013). Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. Plos ONE, 8(3), e58210. https://doi.org/10.1371/journal.pone.0058210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker, C. J. (1977). Asymptotic nature of grass canopy spectral reflectance. Applied Optics, 16(5), 1151–1156.

    Article  CAS  PubMed  Google Scholar 

  • Van der Meer, F. (2012). Remote-sensing image analysis and geostatistics. International Journal of Remote Sensing, 33(18), 5644–5676.

    Article  Google Scholar 

  • Wackernagel, H. (2003). Multivariate Geostatistics: An introduction with applications (3rd ed.). Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Walter, A. M., Christensen, S., & Simmelsgaard, S. E. (2002). Spatial correlation between weed species densities and soil properties. Weed Research, 42(1), 26–38.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists (2nd ed.). Chichester: John Wiley and Sons, Ltd.

    Book  Google Scholar 

  • Wilson, B. J., Wright, K. J., Brain, P., Clements, M., & Stephens, E. (1995). Predicting the competitive effects of weed and crop density on weed biomass, weed production and crop yield in wheat. Weed Research, 35(4), 265–278.

    Article  Google Scholar 

  • Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 38(1), 259–269.

    Article  Google Scholar 

  • Yao, H., & Huang, Y. (2013). Remote sensing applications to precision farming. In G. Wang & Q. Weng (Eds.), Remote sensing of natural resources (pp. 333–352). Boca Raton, FL: CRC.

    Chapter  Google Scholar 

  • Zhang, C., & Kovacs, J. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712.

    Article  CAS  Google Scholar 

  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture: A worldwide overview. Computers and Electronics in Agriculture, 36(2–3), 113–132.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financed by the AGL2014-52465-C4-4-R and AGL2017-83325-C4-4-R MINECO (Spanish Ministry of Economy and Competition, FEDER Funds). Research of AI. de Castro was financed by Juan de la Cierva (MINECO) program. The authors thank Dr. Recasens and his group for their valuable help in field surveys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Jurado-Expósito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurado-Expósito, M., de Castro, A.I., Torres-Sánchez, J. et al. Papaver rhoeas L. mapping with cokriging using UAV imagery. Precision Agric 20, 1045–1067 (2019). https://doi.org/10.1007/s11119-019-09635-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-019-09635-z

Keywords

Navigation