Skip to main content

Advertisement

Log in

Underlying causes of yield spatial variability and potential for precision management in rice systems

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Our current understanding of the mechanisms driving spatiotemporal yield variability in rice systems is insufficient for effective management at the sub-field scale. The overall objective of this study was to evaluate the potential of precision management for rice production. The spatiotemporal properties of multiyear yield monitor data from four rice fields, representing varying soil types and locations within the primary rice growing region in California, were quantified and characterized. The role of water management, land-leveling, and the spatial distribution of soil properties in driving yield heterogeneity was explored. Mean yield and coefficient of variation at the sampling points within each field ranged from 9.2 to 12.1 Mg ha−1 and from 7.1 to 14.5 %, respectively. Using a k-means clustering and randomization method, temporally stable yield patterns were identified in three of the four fields. Redistribution of dissolved organic carbon, nitrogen, potassium and salts by lateral flood water movement was observed across all fields, but was only related to yield variability via exacerbating areas with high soil salinity. The effects of cold water temperature and land-leveling on yield variability were not observed. Soil electrical conductivity and/or plant available phosphorus were identified as the underlying causes of the within-field yield patterns using classification and regression trees. Our results demonstrate that while the high temporal yield variability in some rice fields does not permit precision management, in other fields exhibiting stable yield patterns with identifiable causes, precision management and modified water management may improve the profitability and resource-use efficiency of rice production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bakhsh, A., Jaynes, D. B., Colvin, T. S., & Kanwar, R. S. (2000). Spatio-temporal analysis of yield variability for a corn-soybean field in Iowa. Transactions of the ASAE, 43(1), 31–38.

    Google Scholar 

  • Basso, B., Bertocco, M., Sartori, L., & Martin, E. C. (2007). Analyzing the effects of climate variability on spatial pattern of yield in a maize–wheat–soybean rotation. European Journal of Agronomy, 26(2), 82–91.

    Article  Google Scholar 

  • Bivand, R., Altman, M., Anselin, L., Assunção, R., Berke, O., Bernat, A., et al. (2010). Spdep: spatial dependence: weighting schemes, statisitics and models. R package version 0.5-21. http://CRAN.R-project.org/package=spdep. Accessed 31 Aug 2010.

  • Brye, K. R. (2006). Soil biochemical properties as affected by land leveling in a clayey aquert. Soil Science Society of America Journal, 70(4), 1129–1139.

    Article  CAS  Google Scholar 

  • Burt, R. (2004). Soil survey laboratory methods manual. SSIR No. 42, Version 4.0. NRCS-USDA. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Casanova, D., Goudriaan, J., Bouma, J., & Epema, G. F. (1999). Yield gap analysis in relation to soil properties in direct-seeded flooded rice. Geoderma, 91(3–4), 191–216.

    Article  Google Scholar 

  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences, USA, 96(11), 5952–5959.

    Article  CAS  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (Eds.). (1998). Standard methods for the examination of water and wastewater, flow injection analysis for orthophosphate (method 4500-P G) (20th ed., pp. 4-149–4-150). Washington, DC: American Public Health Association.

  • De Datta, S. K., & Mikkelson, D. S. (1985). Potassium nutrition of rice. In R. D. Munson (Ed.), Potassium in Agriculture (pp. 665–669). Madison, WI: ASA, CSSA, and SSSA.

    Google Scholar 

  • Delmotte, S., Tittonell, P., Mouret, J. C., Hammond, R., & Lopez-Ridaura, S. (2011). On farm assessment of rice yield variability and productivity gaps between organic and conventional cropping systems under mediterranean climate. European Journal of Agronomy, 35(4), 223–236.

    Article  Google Scholar 

  • Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., & Weingessel, A. (2010). e1071: Misc functions of the department of statistics (e1071), TU Wien. R package version 1.5-24. http://CRAN.R-project.org/package=e1071. Accessed 15 Feb 2012.

  • Doane, T. A., & Horwath, W. R. (2003). Spectrophotometric determination of nitrate with a single reagent. Analytical Letters, 36(12), 2713–2722.

    Article  CAS  Google Scholar 

  • Dobermann, A. (1994). Factors causing field variation of direct-seeded flooded rice. Geoderma, 62(1–3), 125–150.

    Article  Google Scholar 

  • Eck, H. V. (1987). Characteristics of exposed subsoil—at exposure and 23 years later. Agronomy Journal, 79(6), 1067–1073.

    Article  Google Scholar 

  • Flowers, T. J., & Yeo, A. R. (1981). Variability in the resistance of sodium chloride within rice (Oryza sativa L.) varieties. New Phytologist, 88(2), 863–1373.

    Article  Google Scholar 

  • Forster, J. C. (1995). Soil nitrogen. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 79–87). New York: Academic Press.

    Google Scholar 

  • Guastaferro, F., Castrignanó, A., De Benedetto, D., Sollitto, D., Troccoli, A., & Cafarelli, B. (2010). A comparison of different algorithms for the delineation of management zones. Precision Agriculture, 11(6), 600–620.

    Article  Google Scholar 

  • Harris, D., Horwath, W. R., & van Kessel, C. (2001). Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Science Society of America Journal, 65(6), 1853–1856.

    Article  CAS  Google Scholar 

  • Hofer, S. (2003). Determination of ammonia (salicylate) in 2 M KCl soil extracts by flow injection analysis. QuikChem method 12-107-06-2-A. Loveland: Lachat Instruments.

    Google Scholar 

  • Khatun, S., & Flowers, T. J. (1995). Effects of salinity on seed set in rice. Plant, Cell and Environment, 18(1), 61–67.

    Article  Google Scholar 

  • Knepel, K. (2003). Determination of nitrate in 2 M KCl soil extracts by flow injection analysis. QuikChem method 12-107-04-1-B. Loveland: Lachat Instruments.

    Google Scholar 

  • Lark, R. M., & Stafford, J. V. (1997). Classification as a first step in the interpretation of temporal and spatial variation of crop yield. Annals of Applied Biology, 130(1), 111–121.

    Article  Google Scholar 

  • Linquist, B., & Ruark, M. (2011). Re-evaluating diagnostic phosphorus tests for rice systems based on soil phosphorus fractions and field level budgets. Agronomy Journal, 103(2), 501–508.

    Google Scholar 

  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46(12), 1843–1852.

    Article  CAS  Google Scholar 

  • Maas, E. V. (1990). Crop salt tolerance. In K. K. Tanji (Ed.), Agricultural salinity assessment and management manual (pp. 262–304). New York: American Society of Civil Engineers (ASCE) Manuals & Reports on Engineering Practices No. 71.

    Google Scholar 

  • Maas, E. V., & Grattan, S. R. (1999). Crop yields as affected by salinity. In R. W. Skaggs & J. van Schilfgaarde (Eds.), Agricultural drainage. Agronomy Monograph No. 38 (pp. 55–108). Madison, WI: ASA and SSSA.

  • Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance—current assessment. Journal of Irrigation and Drainage Engineering, American Society of Civil Engineers, 103(2), 115–134.

    Google Scholar 

  • Miranda, K. M., Espey, M. G., & Wink, D. A. (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5(1), 62–71.

    Article  PubMed  CAS  Google Scholar 

  • Mzuku, M., Khosla, R., Reich, R., Inman, D., Smith, F., & MacDonald, L. (2005). Spatial variability of measured soil properties across site-specific management zones. Soil Science Society of America Journal, 69(5), 1572–1579.

    Article  CAS  Google Scholar 

  • Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, Part 2: Chemical and microbiological properties. Agronomy Mongraph No. 9 (2nd ed., pp. 403–430). Madison, WI: ASA and SSSA.

    Google Scholar 

  • Perez-Quezada, J. F., Pettygrove, G. S., & Plant, R. E. (2003). Spatial-temporal analysis of yield and the influence of soil factors in two four-crop-rotation fields in the Sacramento Valley, California. Agronomy Journal, 95(3), 676–687.

    Article  Google Scholar 

  • Raney, F. C., Hagan, R. M., & Finfrock, D. C. (1957). Water temperature in irrigation. California Agriculture, 11(4), 19–20.

    Google Scholar 

  • Rao, P. S., Mishra, B., Gupta, S. R., & Rathore, A. (2008). Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breeding, 127(3), 256–261.

    Article  Google Scholar 

  • Maclean, J. L., Dawe, D. C., Hardy, B., & Hettel, G. P. (Eds.). (2002). Rice almanac (3rd ed). Wallingford: CABI Publishing and Los Baños.

  • Roel, A., Mutters, R. G., Eckert, J. W., & Plant, R. E. (2005). Effect of low water temperature on rice yield in California. Agronomy Journal, 97(3), 943–948.

    Article  Google Scholar 

  • Roel, A., & Plant, R. E. (2004a). Spatiotemporal analysis of rice yield variability in two California fields. Agronomy Journal, 96(1), 77–90.

    Article  Google Scholar 

  • Roel, A., & Plant, R. E. (2004b). Factors underlying yield variability in two California rice fields. Agronomy Journal, 96(5), 1481–1494.

    Article  Google Scholar 

  • Scardaci, S. C., Shannon, M. C., Grattan, S. R., Eke, A. U., Roberts, S. R., Goldman-Smith, S., et al. (2002). Water management practices can affect salinity in rice fields. California Agriculture, 56(6), 184–188.

    Article  Google Scholar 

  • Shannon, M. C., Rhoades, J. D., Draper, J. H., Scardaci, S. C., & Spyres, M. D. (1998). Assessment of salt tolerance in rice cultivars in response to salinity problems in California. Crop Science, 38(2), 394–398.

    Article  CAS  Google Scholar 

  • Shimono, H. T., Hasegawa, T., Fujimura, S., & Iwama, K. (2004). Responses of leaf photosynthesis and plant water status in rice to low water temperature at different growth stages. Field Crops Research, 89(1), 71–83.

    Article  Google Scholar 

  • Shimono, H. T., Hasegawa, T., & Iwama, K. (2002). Responses of growth and grain yield in paddy rice to cool water at different growth stages. Field Crops Research, 73(2–3), 67–79.

    Article  Google Scholar 

  • Shimono, H., Okada, M., Kanda, E., & Arakawa, I. (2007). Low temperature-induced sterility in rice: Evidence for the effects of temperature before panicle initiation. Field Crops Research, 101(2), 221–231.

    Article  Google Scholar 

  • Therneau, T. M., & Atkinson, B. (2009). R port by brian ripley. rpart: recursive partitioning. R package version 3.1-45. http://CRAN.R-project.org/package=rpart. Accessed 15 Feb 2012.

  • Thomas, G. W. (1982). Exchangeable cations. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties. Agronomy monograph 9 (2nd ed., pp. 159–165). Madison, WI: ASA and SSSA.

    Google Scholar 

  • U.S. Environmental Protection Agency Method 200.7. (2001). Trace elements in water, solids, and biosolids by inductively coupled plasma-atomic emission spectrometry. Washington, DC: U.S. EPA.

    Google Scholar 

  • Verdouw, H., Van Echteld, C. J. A., & Dekkers, E. M. J. (1978). Ammonia determination based on indophenol formation with sodium salicylate. Water Research, 12(6), 399–402.

    Article  CAS  Google Scholar 

  • Waggoner, P. E., & Aylor, D. E. (2000). Epidemiology, a science of patterns. Annual Review of Phytopathology, 38(1), 71–94.

    Article  PubMed  CAS  Google Scholar 

  • Walker, T. W., Kingery, W. L., Street, J., Cox, M. S., Oldham, J. L., Gerard, P. D., et al. (2003). Rice yield and soil chemical properties as affected by precision land-leveling in alluvial soils. Agronomy Journal, 95(6), 1483–1488.

    Article  Google Scholar 

  • Wehlan, B. M., & McBratney, A. B. (2000). The “null hypothesis” of precision agriculture management. Precision Agriculture, 2(3), 265–279.

    Article  Google Scholar 

  • Williams, J. F. (2010). Rice nutrient management in California. Publ. 3516. California: University of California, Agriculture and Natural Resources.

    Google Scholar 

  • Yanai, J., Lee, C. K., Kaho, T., Iida, M., Matsui, T., Umeda, M., et al. (2001). Geostatistical analysis of soil chemical properties and rice yield in a paddy field and application to the analysis of yield-determining factors. Soil Science and Plant Nutrition, 47(2), 291–301.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Kearney Foundation of Soil Science; William G. and Kathleen Golden International Agriculture Fellowship; Henry A. Jastro Graduate Research Award; D. Marlin Brandon Rice Research Fellowship; and the Ben A. Madson Scholarship. Additionally, the research of J.M. Peña-Barragan was granted by the Fulbright-MEC postdoctoral program, financed by the Secretariat of State for Research of the Spanish Ministry for Science and Innovation. We thank the cooperating growers, George Tibbitts, Larry Maben and Charley Mathews for allowing us to conduct research on their farms. We are very grateful to the Agroecosystems Lab Manager, Cesar Abrenilla, as well as Kristen Kammeier, Denia Rodriguez Piza, Tim Doane, Ligia Azevedo, Bob Rousseau and numerous members of the Agroecosystems Lab at UC Davis for their assistance in the field and lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maegen B. Simmonds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmonds, M.B., Plant, R.E., Peña-Barragán, J.M. et al. Underlying causes of yield spatial variability and potential for precision management in rice systems. Precision Agric 14, 512–540 (2013). https://doi.org/10.1007/s11119-013-9313-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-013-9313-x

Keywords

Navigation