Skip to main content
Log in

Simple method to obtaining a prolonged-release system of urea based on wheat gluten: development and characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Urea is one of the most widely used nitrogen fertilizers. However, it is lost to the environment via processes such as denitrification, surface runoff, volatilization, and leaching. In this paper, a novel material is reported on, with low production cost and avoiding the use of harmful solvents, with a pastille morphology developed by a simple method from a mixture of wheat gluten and urea, with potential use as a prolonged-release system of urea (PRSU). The PRSU obtained was characterized by scanning electron microscopy, kinetics of water absorption, equilibrium water content (EWC), Fourier-transform infrared (FT-IR) spectroscopy analysis, and release kinetics. The PRSU diameter was 2.46 cm, and its thickness was 0.17 cm. The PRSU showed physical and structural characteristics such as micropores and hollow fractions in its structure. In addition, the wheat gluten pastille is classified as a swelling material and demonstrated an EWC of 58.47 ± 1.50%. FT-IR analysis of the samples showed hydrogen-bond interactions between the amino and carbonyl groups in the urea and the wheat gluten proteins. Laboratory tests showed that the system can release 97% of the urea within 8–10 h. These results showed that the PRSU presents suitable characteristics for its application as a fertilization alternative for carrying out better agronomic practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geng J, Sun Y, Zhang M, Li C, Yang Y, Liu Z, Li S (2015) Long-term effects of controlled release urea application on crop yields and soil fertility under rice-oilseed rape rotation system. Field Crops Res 184:65–73. https://doi.org/10.1016/j.fcr.2015.09.003

    Article  Google Scholar 

  2. Edrisi A, Mansoori Z, Dabir B (2016) Urea synthesis using chemical looping process–Techno-economic evaluation of a novel plant configuration for a green production. Int J Greenhouse Gas Control 44:42–51. https://doi.org/10.1016/j.ijggc.2015.10.020

    Article  CAS  Google Scholar 

  3. Koohestanian E, Sadeghi J, Mohebbi-Kalhori D, Shahraki F, Samimi A (2018) A novel process for CO2 capture from the flue gases to produce urea and ammonia. Energy 144:279–285. https://doi.org/10.1016/j.energy.2017.12.034

    Article  CAS  Google Scholar 

  4. Li P, Lu J, Wang Y, Wang S, Hussain S, Ren T, Cong R, Li X (2016) Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric Ecosyst Environ 251:78–87. https://doi.org/10.1016/j.agee.2017.09.020

    Article  CAS  Google Scholar 

  5. Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric Ecosyst Environ 191:5–16. https://doi.org/10.1016/j.agee.2013.10.009

    Article  CAS  Google Scholar 

  6. Yamamoto CF, Pereira EI, Mattoso LH, Matsunaka T, Ribeiro C (2016) Slow release fertilizers based on urea/urea–formaldehyde polymer nanocomposites. Chem Eng J 287:390–397. https://doi.org/10.1016/j.cej.2015.11.023

    Article  CAS  Google Scholar 

  7. Mukerabigwi JF, Wang Q, Ma X, Liu M, Lei S, Wei H, Huang X, Cao Y (2015) Urea fertilizer coated with biodegradable polymers and diatomite for slow release and water retention. J Coat Technol Res 12(6):1085–1094. https://doi.org/10.1007/s11998-015-9703-2

    Article  CAS  Google Scholar 

  8. Tallaksen J, Bauer F, Hulteberg C, Reese M, Ahlgren S (2015) Nitrogen fertilizers manufactured using wind power: greenhouse gas and energy balance of community-scale ammonia production. J Cleaner Prod 107:626–635. https://doi.org/10.1016/j.jclepro.2015.05.130

    Article  CAS  Google Scholar 

  9. Tian X, Li C, Zhang M, Li T, Lu Y, Liu L (2018) Controlled release urea improved crop yields and mitigated nitrate leaching under cotton-garlic intercropping system in a 4-year field trial. Soil Tillage Res 175:158–167. https://doi.org/10.1016/j.still.2017.08.015

    Article  Google Scholar 

  10. Naz MY, Sulaiman SA (2016) Slow release coating remedy for nitrogen loss from conventional urea: a review. J Controlled Release 225:109–120. https://doi.org/10.1016/j.jconrel.2016.01.037

    Article  CAS  Google Scholar 

  11. Tasca AL, Nessi S, Rigamonti L (2017) Environmental sustainability of agri-food supply chains: An LCA comparison between two alternative forms of production and distribution of endive in northern Italy. J Cleaner Prod 140:725–741. https://doi.org/10.1016/j.jclepro.2016.06.170

    Article  Google Scholar 

  12. Fujinuma R, Balster NJ, Norman JM (2009) An improved model of nitrogen release for surface-applied controlled-release fertilizer. Soil Sci Soc Am J 73(6):2043–2050. https://doi.org/10.2136/sssaj2009.0085

    Article  CAS  Google Scholar 

  13. Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH (2014) Review on materials & methods to produce controlled release coated urea fertilizer J Controlled Release 181:11–21. https://doi.org/10.1016/j.jconrel.2014.02.020

    Article  CAS  Google Scholar 

  14. Sartain JB, Hall WL, Littell RC, Hopwood EW (2004) New tools for the analysis and characterization of slow-release fertilizers. Environ Impact Fertil Soil Water 872:180–195. https://doi.org/10.1021/bk-2004-0872.ch013

    Article  CAS  Google Scholar 

  15. Simonne EH, Hutchinson CM (2005) Controlled-release fertilizers for vegetable production in the era of best management practices: teaching new tricks to an old dog. HortTechnology 15(1): 36–46. https://doi.org/10.21273/HORTTECH.15.1.0036

    Article  Google Scholar 

  16. Morgan KT, Cushman KE, Sato S (2009) Release mechanisms for slow-and controlled-release fertilizers and strategies for their use in vegetable production. HortTechnology 19(1):10–12. https://doi.org/10.21273/HORTSCI.19.1.10

    Article  Google Scholar 

  17. Adams C, Frantz J, Bugbee B (2013) Macro- and micronutrient-release characteristics of three polymer-coated fertilizers: Theory and measurements. J Plant Nutr Soil Sc 176(1):76–88. https://doi.org/10.1002/jpln.201200156

    Article  CAS  Google Scholar 

  18. Xiaoyu N, Yuejin W, Zhengyan W, Lin W, Guannan Q, Lixiang Y (2013) A novel slow-release urea fertiliser: physical and chemical analysis of its structure and study of its release mechanism. Biosys Eng 115(3):274–282. https://doi.org/10.1016/j.biosystemseng.2013.04.001

    Article  Google Scholar 

  19. Castro-Enríquez DD, Rodríguez-Félix F, Ramírez-Wong B, Torres-Chávez PI, Castillo-Ortega MM, Rodríguez-Félix DE, Armenta-Villegas L, Ledesma-Osuna AI (2012) Preparation, characterization and release of urea from wheat gluten electrospun membranes. Materials 5(12):2903–2916. https://doi.org/10.3390/ma5122903

    Article  CAS  PubMed Central  Google Scholar 

  20. Xiao X, Yu L, Xie F, Bao X, Liu H, Ji Z, Chen L (2017) One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chem Eng J 309:607–616. https://doi.org/10.1016/j.cej.2016.10.101

    Article  CAS  Google Scholar 

  21. Barreras-Urbina CG, Ramírez-Wong B, López-Ahumada GA, Burruel-Ibarra SE, Martínez-Cruz O, Tapia-Hernández JA, Rodriguez Felix F (2016) Nano-and micro-particles by nanoprecipitation: Possible application in the food and agricultural industries. Int J Food Prop 19(9):1912–1923. https://doi.org/10.1080/10942912.2015.1089279

    Article  CAS  Google Scholar 

  22. Tapia-Hernández JA, Rodríguez-Félix DE, Plascencia-Jatomea M, Rascón-Chu A, López-Ahumada GA, Ruiz-Cruz S, Barreras-Urbina CG, Rodríguez-Félix F (2018) Porous wheat gluten microparticles obtained by electrospray: Preparation and characterization. Adv Polym Technol 37:2314–2324. https://doi.org/10.1002/adv.21907

    Article  CAS  Google Scholar 

  23. Wieser H (2007) Chemistry of gluten proteins. Food microbiol 24(2):115–119. https://doi.org/10.1016/j.fm.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  24. Scherf KA, Koehler P, Wieser H (2016) Gluten and wheat sensitivities–an overview. J Cereal Sci 67:2–11. https://doi.org/10.1016/j.jcs.2015.07.008

    Article  CAS  Google Scholar 

  25. Joye IJ, Nelis VA, McClements DJ (2015) Gliadin-based nanoparticles: Stabilization by post-production polysaccharide coating. Food Hydrocolloids 43:236–242. https://doi.org/10.1016/j.foodhyd.2014.05.021

    Article  CAS  Google Scholar 

  26. Tapia-Hernández JA, Torres-Chávez PI, Ramírez-Wong B, Rascón-Chu A, Plascencia-Jatomea M, Barreras-Urbina CG, Rangel-Vázquez NA, Rodríguez-Félix F (2015) Micro-and nanoparticles by electrospray: advances and applications in foods. J Agric Food Chem 63(19):4699–4707. https://doi.org/10.1021/acs.jafc.5b01403

    Article  CAS  PubMed  Google Scholar 

  27. Li Q, Ma Z, Yue Q, Gao B, Li W, Xu X (2012) Synthesis, characterization and swelling behavior of superabsorbent wheat straw graft copolymers. Bioresour Technol 118:204–209. https://doi.org/10.1016/j.biortech.2012.03.028

    Article  CAS  PubMed  Google Scholar 

  28. Kim SJ, Park SJ, Kim SI (2003) Swelling behavior of interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and chitosan. React Funct Polym 55(1):53–59. https://doi.org/10.1016/S1381-5148(02)00214-6

    Article  CAS  Google Scholar 

  29. Qiao ZA, Chai SH, Nelson K, Bi Z, Chen J, Mahurin SM, Xiang Z, Dai S (2014) Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates. Nat Commun 5:3705. https://doi.org/10.1038/ncomms4705

    Article  CAS  PubMed  Google Scholar 

  30. Chavda HV, Patel CN (2011) Effect of crosslinker concentration on characteristics of superporous hydrogel. Int J Pharm Investig 1(1):17. https://doi.org/10.4103/2230-973X.76724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hammann F, Schmid M (2014) Determination and quantification of molecular interactions in protein films: a review. Materials 7(12):7975–7996. https://doi.org/10.3390/ma7127975

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nandi S, Winter HH (2005) Swelling behavior of partially cross-linked polymers: a ternary system. Macromolecules 38(10):4447–4455. https://doi.org/10.1021/ma048335e

    Article  CAS  Google Scholar 

  33. Zaleski R, Stefaniak W, Gorgol M, Gil M, Krasucka P, Goworek J (2019) Swelling of cross-linked polymers in silicones of different molecular weight. Polymer. https://doi.org/10.1016/j.polymer.2019.121611

    Article  Google Scholar 

  34. Ozel B, Uguz SS, Kilercioglu M, Grunin L, Oztop MH (2017) Effect of different polysaccharides on swelling of composite whey protein hydrogels: a low field (LF) NMR relaxometry study. J. Food Process Eng. 40(3):e12465. https://doi.org/10.1111/jfpe.12465

    Article  CAS  Google Scholar 

  35. Rizwan M, Yahya R, Hassan A, Yar M, Azzahari AD, Selvanathan V, Sonsudin F, Abouloula CN (2017) pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9(4):137. https://doi.org/10.3390/polym9040137

    Article  CAS  PubMed Central  Google Scholar 

  36. Dórame-Miranda RF, Rodríguez-Félix DE, López-Ahumada GA, Castro-Enriquez DD, Quiroz-Castillo JM, Márquez-Ríos E, Rodríguez-Félix F (2018) Effect of pH and temperature on the release kinetics of urea from wheat-gluten membranes obtained by electrospinning. Polym Bull 75(11):5305–5319. https://doi.org/10.1007/s00289-018-2327-9

    Article  CAS  Google Scholar 

  37. El-Rehim HA, Hegazy ESA, El-Mohdy HA (2004) Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. J Appl Polym Sci 93(3):1360–1371. https://doi.org/10.1002/app.20571

    Article  CAS  Google Scholar 

  38. Barreras-Urbina CG, Rodríguez-Félix F, López-Ahumada GA, Burruel-Ibarra SE, Tapia-Hernández JA, Castro-Enríquez DD, Rueda-Puente EO (2018) Microparticles from wheat-gluten proteins soluble in ethanol by nanoprecipitation: preparation, characterization, and their study as a prolonged-release fertilizer. Int. J of Polym Sci. 2018:1–10. https://doi.org/10.1155/2018/1042798

    Article  CAS  Google Scholar 

  39. Zhang Y, Tu D, Shen Q, Dai Z (2019) Fish scale valorization by hydrothermal pretreatment followed by enzymatic hydrolysis for gelatin hydrolysate production. Molecules 24(16):2998. https://doi.org/10.3390/molecules24162998

    Article  CAS  PubMed Central  Google Scholar 

  40. Barth A (2007) Infrared spectroscopy of proteins. Biochim et Biophys Acta (BBA)-Bioenerget, 1767(9), 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  CAS  Google Scholar 

  41. Robertson GH, Cao TK, Gregorski KS, Hurkman WJ, Tanaka CK, Chiou, BS, Glenn GM, Orts WJ (2014) Modification of vital wheat gluten with phosphoric acid to produce high free swelling capacity. J Appl Polym Sci. https://doi.org/10.1002/app.39440

    Article  Google Scholar 

  42. Timilsena YP, Adhikari R, Casey P, Muster T, Gill H, Adhikari B (2015) Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. J Sci Food Agric 95(6):1131–1142. https://doi.org/10.1002/jsfa.6812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the economic support given by CONACYT, through the project of basic science 178436, and the Universidad de Sonora. Carlos G. Barreras-Urbina, José Agustín Tapia-Hernández, and Daniela D. Castro-Enríquez thank CONACYT for the granted scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rodríguez-Félix.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreras-Urbina, C.G., Plascencia-Jatomea, M., Wong-Corral, F.J. et al. Simple method to obtaining a prolonged-release system of urea based on wheat gluten: development and characterization. Polym. Bull. 77, 6525–6541 (2020). https://doi.org/10.1007/s00289-019-03074-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03074-6

Keywords

Navigation