Skip to main content
Log in

Electrospun tubes based on PLA, gelatin and genipin in different arrangements for blood vessel tissue engineering

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Four tubular membranes based on PLA and gelatin with different arrangements (PLA, gelatin, PLA-gelatin Blend and PLA/gelatin Core/Shell) were prepared by the electrospinning technique, the gelatin within the materials was crosslinked with genipin and all the meshes were characterized by SEM, ATR-FTIR, TGA, DSC, XRD and mechanical tests, also a viability essay and a confocal microscopy of HUVECs in contact with the materials were carried out. A 50% decrement of cellular viability was observed in the fibers with Core/Shell structure since the first day of culture compared with the tissue culture polystyrene, due to solubilization of non-crosslinked gelatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cameron A, Davis KB, Green G, Schaff HV (1996) Coronary bypass surgery with internal-thoracic-artery grafts—effects on survival over a 15-year period. N Engl J Med 334(4):216–220. https://doi.org/10.1056/NEJM199601253340402

    Article  CAS  PubMed  Google Scholar 

  2. Gaudino M, Benedetto U, Fremes S et al (2018) Radial-artery or saphenous-vein grafts in coronary-artery bypass surgery. N Engl J Med 378(22):2069–2077. https://doi.org/10.1056/nejmoa1716026

    Article  PubMed  Google Scholar 

  3. Serruys PW, Unger F, Sousa JE et al (2001) Comparison of coronary-artery bypass surgery and stenting for the treatment of multivessel disease. N Engl J Med 344(15):1117–1124. https://doi.org/10.1056/NEJM200104123441502

    Article  CAS  PubMed  Google Scholar 

  4. Awad NK, Niu H, Ali U, Morsi YS, Lin T (2018) Electrospun fibrous scaffolds for small-diameter blood vessels: a review. Membranes (Basel). 8(1):1–26. https://doi.org/10.3390/membranes8010015

    Article  CAS  Google Scholar 

  5. Kharazi AZ, Atari M, Vatankhah E, Javanmard SH (2018) A nanofibrous bilayered scaffold for tissue engineering of small-diameter blood vessels. Polym Adv Technol 29(12):3151–3158. https://doi.org/10.1002/pat.4437

    Article  CAS  Google Scholar 

  6. Raines EW (2000) The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int J Exp Pathol. 81(3):173–182

    Article  CAS  Google Scholar 

  7. Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP et al (2008) Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29(19):2907–2914. https://doi.org/10.1016/j.biomaterials.2008.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kai D, Liow SS, Loh XJ (2015) Biodegradable polymers for electrospinning: towards biomedical applications. Mater Sci Eng, C 45:659–670. https://doi.org/10.1016/j.msec.2014.04.051

    Article  CAS  Google Scholar 

  9. Strobel HA, Calamari EL, Beliveau A, Jain A, Rolle MW (2018) Fabrication and characterization of electrospun polycaprolactone and gelatin composite cuffs for tissue engineered blood vessels. J Biomed Mater Res—Part B Appl Biomater 106(2):817–826. https://doi.org/10.1002/jbm.b.33871

    Article  CAS  PubMed  Google Scholar 

  10. Tsuji H (2014) Poly (lactic acid). https://doi.org/10.1002/9780470649848

  11. Park H, Radisic M, Lim JO, Chang BH, Vunjak-Novakovic G (2005) A novel composite scaffold for cardiac tissue engineering. Vitr Cell Dev Biol Anim. 41(7):188. https://doi.org/10.1290/0411071.1

    Article  CAS  Google Scholar 

  12. Mi HY, Jing X, Li ZT, Lin YJ, Thomson JA, Turng LS (2019) Fabrication and modification of wavy multicomponent vascular grafts with biomimetic mechanical properties, antithrombogenicity, and enhanced endothelial cell affinity. J Biomed Mater Res Part B Appl Biomater 1–12. https://doi.org/10.1002/jbm.b.34333

  13. Swarnalatha B, Nair SL, Shalumon KT et al (2013) Poly (lactic acid)-chitosan-collagen composite nanofibers as substrates for blood outgrowth endothelial cells. Int J Biol Macromol 58:220–224. https://doi.org/10.1016/j.ijbiomac.2013.03.060

    Article  CAS  PubMed  Google Scholar 

  14. Lynn AK, Yannas IV, Bonfield W (2004) Antigenicity and immunogenicity of collagen. J Biomed Mater Res Part B Appl Biomater 71(2):343–354. https://doi.org/10.1002/jbm.b.30096

    Article  CAS  Google Scholar 

  15. Krebsbach PH, Mankani MH, Satomura K, Kuznetsov SA, Robey PG (1998) Repair of craniotomy defects using bone marrow stromal cells. Transplantation 66(10):1272–1278. https://doi.org/10.1097/00007890-199811270-00002

    Article  CAS  PubMed  Google Scholar 

  16. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158(2):353–361. https://doi.org/10.1016/j.cej.2010.02.003

    Article  CAS  Google Scholar 

  17. Dreesmann L, Ahlers M, Schlosshauer B (2007) The pro-angiogenic characteristics of a cross-linked gelatin matrix. Biomaterials 28(36):5536–5543. https://doi.org/10.1016/j.biomaterials.2007.08.040

    Article  CAS  PubMed  Google Scholar 

  18. Hong Y, Gong Y, Gao C, Shen J (2008) Collagen-coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration. J Biomed Mater Res Part A. 85(3):628–637. https://doi.org/10.1002/jbm.a.31603

    Article  CAS  Google Scholar 

  19. Aldana AA, Abraham GA (2017) Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm 523(2):441–453. https://doi.org/10.1016/j.ijpharm.2016.09.044

    Article  CAS  PubMed  Google Scholar 

  20. Ullm S, Krüger A, Tondera C et al (2014) Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties. Biomaterials 35(37):9755–9766. https://doi.org/10.1016/j.biomaterials.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  21. Piris MA, Mollejo M, Campo E, Menárguez J, Flores T, Isaacson PG (1998) A marginal zone pattern may be found in different varieties of non-Hodgkin’s lymphoma: the morphology and immunohistology of splenic involvement by B-cell lymphomas simulating splenic marginal zone lymphoma. Histopathology 33(3):230–239. https://doi.org/10.1046/j.1365-2559.1998.00478.x

    Article  CAS  PubMed  Google Scholar 

  22. Manickam B, Sreedharan R, Elumalai M (2014) ‘Genipin’—the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an overview. Curr Drug Deliv 11(1):139–145. https://doi.org/10.2174/15672018113106660059

    Article  CAS  PubMed  Google Scholar 

  23. Liang HC, Chang WH, Liang HF, Lee MH, Sung HW (2004) Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J Appl Polym Sci 91(6):4017–4026. https://doi.org/10.1002/app.13563

    Article  CAS  Google Scholar 

  24. Butler MF, Ng YF, Pudney PDA (2003) Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci, Part A: Polym Chem 41(24):3941–3953. https://doi.org/10.1002/pola.10960

    Article  CAS  Google Scholar 

  25. Wang DK, Varanasi S, Fredericks PM et al (2013) FT-IR characterization and hydrolysis of PLA-PEG-PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study. J Polym Sci, Part A: Polym Chem 51(24):5163–5176. https://doi.org/10.1002/pola.26930

    Article  CAS  Google Scholar 

  26. 2001—Thomson Learning, Inc.—Pavia, Lampman, Kriz - Introduction to Spectroscopy third edition.pdf

  27. Hashim DM, Man YBC, Norakasha R, Shuhaimi M, Salmah Y, Syahariza ZA (2010) Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food Chem 118(3):856–860. https://doi.org/10.1016/j.foodchem.2009.05.049

    Article  CAS  Google Scholar 

  28. Daniel-Da-Silva AL, Salgueiro AM, Trindade T (2013) Effects of Au nanoparticles on thermoresponsive genipin-crosslinked gelatin hydrogels. Gold Bull. 46(1):25–33. https://doi.org/10.1007/s13404-012-0078-1

    Article  CAS  Google Scholar 

  29. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenerget 1767(9):1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  CAS  Google Scholar 

  30. Di Tommaso S, David H, Gomar J, Leroy F, Adamo C (2014) From iridoids to dyes: a theoretical study on genipin reactivity. RSC Adv 4(22):11029–11038. https://doi.org/10.1039/c3ra47159d

    Article  CAS  Google Scholar 

  31. Touyama R, Takeda Y, Inoue K et al (2011) Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments. Chem Pharm Bull 42(3):668–673. https://doi.org/10.1248/cpb.42.668

    Article  Google Scholar 

  32. Devi N, Maji TK (2010) Genipin crosslinked microcapsules of gelatin a and κ-carrageenan polyelectrolyte complex for encapsulation of neem (azadirachta indica a.juss.) seed oil. Polym Bull 65(4):347–362. https://doi.org/10.1007/s00289-010-0246-5

    Article  CAS  Google Scholar 

  33. Moshiul Alam AKM, Beg MDH, Mina MF, Mamun AA, Bledzki AK (2015) Degradation and stability of green composites fabricated from oil palm empty fruit bunch fiber and polylactic acid: effect of fiber length. J Compos Mater 49(25):3103–3114. https://doi.org/10.1177/0021998314560219

    Article  CAS  Google Scholar 

  34. Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91(1):377–384. https://doi.org/10.1016/j.carbpol.2012.08.054

    Article  CAS  PubMed  Google Scholar 

  35. Jalaja K, Naskar D, Kundu SC, James NR (2015) Fabrication of cationized gelatin nanofibers by electrospinning for tissue regeneration. RSC Adv 5(109):89521–89530. https://doi.org/10.1039/c5ra10384c

    Article  CAS  Google Scholar 

  36. Feldstein MM, Roos A, Chevallier C, Creton C, Dormidontova EE (2003) Relation of glass transition temperature to the hydrogen bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers: 3. Analysis of two glass transition temperatures featured for PVP solutions in liquid poly(ethyle). Polymer Guildf 44(6):1819–1834. https://doi.org/10.1016/s0032-3861(03)00046-6

    Article  CAS  Google Scholar 

  37. Bouakaz BS, Pillin I, Habi A, Grohens Y (2018) Synergy between fillers in organomontmorillonite/graphene-PLA nanocomposites. Appl Clay Sci 2015(116–117):69–77. https://doi.org/10.1016/j.clay.2015.08.017

    Article  CAS  Google Scholar 

  38. Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101(1):300–310. https://doi.org/10.1002/app.23346

    Article  CAS  Google Scholar 

  39. Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16(2):208–213. https://doi.org/10.1088/0957-4484/16/2/005

    Article  CAS  PubMed  Google Scholar 

  40. Ercolani E, Del Gaudio C, Bianco A (2013) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 2012:861–888. https://doi.org/10.1002/term

    Article  Google Scholar 

  41. Wong SC, Baji A, Leng S (2008) Effect of fiber diameter on tensile properties of electrospun poly(ε-caprolactone). Polymer (Guildf). 49(21):4713–4722. https://doi.org/10.1016/j.polymer.2008.08.022

    Article  CAS  Google Scholar 

  42. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 26(36):7616–7627. https://doi.org/10.1016/j.biomaterials.2005.05.036

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Mónica Castillo-Ortega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leyva-Verduzco, A.A., Castillo-Ortega, M.M., Chan-Chan, L.H. et al. Electrospun tubes based on PLA, gelatin and genipin in different arrangements for blood vessel tissue engineering. Polym. Bull. 77, 5985–6003 (2020). https://doi.org/10.1007/s00289-019-03057-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03057-7

Keywords

Navigation