Skip to main content
Log in

Nanocomposite hydrogel of poly(vinyl alcohol) and biocatalytically synthesized polypyrrole as potential system for controlled release of metoprolol

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The inclusion of nanostructures into cross-linked polymer networks allows obtaining nanocomposite hydrogels with suitable multifuncionalities for drug delivery applications. In this work, polypyrrole (PPy) nanoparticles, synthesized by a biocatalytic route, were encapsulated into a hydrogel matrix of poly(vinyl alcohol) (PVA) during its reticulation with glutaraldehyde. The novel composite hydrogels were characterized by infrared spectroscopy, thermogravimetric analysis, swelling kinetic measurements, scanning electron microscopy and cyclic voltammetry. The loading capabilities of PVA/PPy hydrogels were tested for metoprolol, a beta blocker used to treat angina, hypertension and to prevent heart attack. In vitro drug release profiles were obtained without and under electrical stimulations. The kinetics of drug release exhibited a power-law time dependence, typical of hydrogel-based systems. The application of electrical potentials changed the release rate of the drug, increasing or decreasing the delivery rate depending on bias voltage. Composite system of PVA and PPy combines the electrochemical redox properties of the conductive polymer with the swelling capacity and molecular diffusivity associated with PVA network; therefore, it can be considered a potential stimuli-responsive platform for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao F, Yao D, Guo R et al (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5:2054–2130

    Article  CAS  Google Scholar 

  2. Pérez-Martínez CJ, Morales Chávez SD, del Castillo-Castro T et al (2016) Electroconductive nanocomposite hydrogel for pulsatile drug release. React Funct Polym 100:12–17

    Article  Google Scholar 

  3. Yun J, Im JS, Lee Y-S, Kim H-I (2011) Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. Eur Polym J 47:1893–1902

    Article  CAS  Google Scholar 

  4. Bekhradnia S, Zhu K, Knudsen KD et al (2014) Structure, swelling, and drug release of thermoresponsive poly(amidoamine) dendrimer–poly(N-isopropylacrylamide) hydrogels. J Mater Sci 49:6102–6110

    Article  CAS  Google Scholar 

  5. de Lima GG, Campos L, Junqueira A et al (2015) A novel pH-sensitive ceramic-hydrogel for biomedical applications. Polym Adv Technol 26:1439–1446

    Article  Google Scholar 

  6. Badakhshanian E, Hemmati K, Ghaemy M (2016) Enhancement of mechanical properties of nanohydrogels based on natural gum with functionalized multiwall carbon nanotube: study of swelling and drug release. Polymer 90:282–289

    Article  CAS  Google Scholar 

  7. Liu T, Hu S, Liu T et al (2006) Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22:5974–5978

    Article  CAS  Google Scholar 

  8. Li T, Zhang M, Wang J et al (2016) Thermosensitive hydrogel co-loaded with gold nanoparticles and doxorubicin for effective chemoradiotherapy. AAPS J 18:146–155

    Article  CAS  Google Scholar 

  9. Pelto J, Haimi S, Puukilainen E et al (2009) Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite. J Biomed Mater Res, Part A 93:1056–1067

    Google Scholar 

  10. Ateh DD, Navsaria HA, Vadgama P (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 3:741–752

    Article  CAS  Google Scholar 

  11. Trieu H, Qutubuddin S (1995) Poly(vinyl alcohol) hydrogels: 2. Effects of processing parameters on structure and properties. Polymer 36:2531–2539

    Article  CAS  Google Scholar 

  12. Ribeiro J, Caseiro AR, Pereira T et al (2017) Evaluation of PVA biodegradable electric conductive membranes for nerve regeneration in axonotmesis injuries: the rat sciatic nerve animal model. J Biomed Mater Res, Part A 105:1267–1280

    Article  CAS  Google Scholar 

  13. Joshi GM, Deshmukh K (2016) Study of conjugated polymer/graphene oxide nanocomposites as flexible dielectric medium. J Mater Sci: Mater Electron 27:3397–3409

    CAS  Google Scholar 

  14. Jian X, Yang H, Li J et al (2017) Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode. Electrochim Acta 228:483–493

    Article  CAS  Google Scholar 

  15. Grijalva-Bustamante GA, Evans-Villegas AG, del Castillo-Castro T et al (2016) Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin. Mater Sci Eng, C 63:650–656

    Article  CAS  Google Scholar 

  16. Kildeeva NR, Perminov PA, Vladimirov LV et al (2009) About mechanism of chitosan cross-linking with glutaraldehyde. Russ J Bioorgan Chem 35:360–369

    Article  CAS  Google Scholar 

  17. Hendrawan Khoerunnisa F, Sonjaya Y, Chotimah N (2016) Physical and chemical characteristics of alginate-poly (vinyl alcohol) based controlled release hydrogel. J Environ Chem Eng 4:4863–4869

    Article  CAS  Google Scholar 

  18. Ahmad J, Deshmukh K, Hägg MB (2013) Influence of TiO2 on the chemical, mechanical, and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membranes. Int J Polym Anal Charact 18:287–296

    Article  CAS  Google Scholar 

  19. Tang C-M, Tian Y-H, Hsu S-H (2015) Poly(vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: mineralization behavior and characterization. Materials 8:4895–4911

    Article  CAS  Google Scholar 

  20. Omastová M, Trchová M, Kovářová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455

    Article  Google Scholar 

  21. Dong S-S, Wu F, Chen L et al (2016) Preparation and characterization of poly(vinyl alcohol)/graphene nanocomposite with enhanced thermal stability using PEtVIm-Br as stabilizer and compatibilizer. Polym Degrad Stab 131:42–52

    Article  CAS  Google Scholar 

  22. Golafshan N, Rezahasani R, Tarkesh Esfahani M et al (2017) Nanohybrid hydrogels of laponite: PVA-alginate as a potential wound healing material. Carbohydr Polym 176:392–401

    Article  CAS  Google Scholar 

  23. Chen X, Chen C, Zhang H et al (2017) Facile approach to the fabrication of 3D cellulose nanofibrils (CNFs) reinforced poly(vinyl alcohol) hydrogel with ideal biocompatibility. Carbohydr Polym 173:547–555

    Article  CAS  Google Scholar 

  24. Bueno VB, Takahashi SH, Catalani LH et al (2015) Biocompatible xanthan/polypyrrole scaffolds for tissue engineering. Mater Sci Eng, C 52:121–128

    Article  CAS  Google Scholar 

  25. Lopes LC, Simas-Tosin FF, Cipriani TR et al (2017) Effect of low and high methoxyl citrus pectin on the properties of polypyrrole based electroactive hydrogels. Carbohydr Polym 155:11–18

    Article  CAS  Google Scholar 

  26. Yan D, Bazant MZ, Biesheuvel PM et al (2017) Theory of linear sweep voltammetry with diffuse charge: unsupported electrolytes, thin films, and leaky membranes. Phys Rev E 95:033303

    Article  Google Scholar 

  27. Hosseinzadeh H (2013) Synthesis and swelling properties of a poly(vinyl alcohol)-based superabsorbing hydrogel. Curr Chem Lett 2:153–158

    Article  CAS  Google Scholar 

  28. Hou R, Nie L, Du G et al (2015) Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels. Colloids Surf B Biointerfaces 132:146–154

    Article  CAS  Google Scholar 

  29. Paranhos CM, Soares BG, Oliveira RN, Pessan LA (2007) Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization. Macromol Mater Eng 292:620–626

    Article  CAS  Google Scholar 

  30. Ge J, Neofytou E, Cahill TJ et al (2012) Drug release from electric-field-responsive nanoparticles. ACS Nano 6:227–233

    Article  CAS  Google Scholar 

  31. Luo X, Cui XT (2009) Electrochemically controlled release based on nanoporous conducting polymers. Electrochem Commun 11:402–404

    Article  CAS  Google Scholar 

  32. Cho Y, Ben BR (2011) Biotin-doped porous polypyrrole films for electrically controlled nanoparticle release. Langmuir 27:6316–6322

    Article  CAS  Google Scholar 

  33. Valencia Castro LE, Pérez Martínez CJ, del Castillo Castro T et al (2015) Chemical polymerization of pyrrole in the presence of l-serine or l-glutamic acid: electrically controlled amoxicillin release from composite hydrogel. J Appl Polym Sci 132:41804

    Article  Google Scholar 

  34. Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48:139–157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the University of Sonora (Project USO316002643) is gratefully acknowledged. This work was conducted within the proposal A1-S-26204 approved by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant Ciencia Básica 2017–2018. Annel Maricruz Orduño Rodríguez acknowledges CONACyT for the scholarship during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa del Castillo Castro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orduño Rodríguez, A.M., Pérez Martínez, C.J., del Castillo Castro, T. et al. Nanocomposite hydrogel of poly(vinyl alcohol) and biocatalytically synthesized polypyrrole as potential system for controlled release of metoprolol. Polym. Bull. 77, 1217–1232 (2020). https://doi.org/10.1007/s00289-019-02788-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02788-x

Keywords

Navigation