Skip to main content
Log in

Thermodynamic characterization of poly (caprolactonediol) by inverse gas chromatography

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Specific retention volumes, V 0 g , were determined for 21 solute probes on poly (caprolactonediol) (PCLD) in the temperature range 323.15–403.15 K by inverse gas chromatography. The retention diagrams drawn between ln V 0 g versus 1/T are linear for all the solutes since PCLD with ten repeating units in its chain behaving like a non polymeric material under the conditions applied. The stationary phase with melting temperature ~321 K is in the liquid state in the GC column over the temperature range studied and hence found to be suitable to determine infinite dilution partial molar thermodynamic properties of mixing for solutes on PCLD. The V 0 g values have been used to calculate weight fraction activity coefficients Ω and Flory–Huggins interaction parameters, χ 12 . The average partial molar enthalpy of solution, \( \overline{\Updelta H}_{1}^{S} , \) and partial molar enthalpy of mixing, \( \overline{\Updelta H}_{1}^{\infty } , \) are calculated using V 0 g and Ω respectively. The average molar enthalpy of vaporization ΔH V1 for solutes have been calculated using \( \overline{\Updelta H}_{1}^{\infty } \) and \( \overline{\Updelta H}_{1}^{S} \) values and compared with the literature values at 363.15 K which is the average column temperature. The partial molar entropy of mixing, \( \overline{\Updelta S}_{1}^{\infty } \)calculated at 363.15 K are in good correlation with the average \( \overline{\Updelta H}_{1}^{\infty } \)values. The total solubility parameter due to Guillet and the Hansen solubility parameters (HSP) are calculated for PCLD using χ 12 values. In the present work the Hansen solubility parameters have been calculated using a new method following the Hansen theory and Huang method with less weight on polar and hydrogen bonding components. The errors in the solubility HSP are lower and the correlation coefficients are better in both the methods compared to unweighted three dimensional model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guillet JE (1970) Molecular probes in the study of polymer structure. J Macromol Sci Chem 4:1669–1674

    Article  CAS  Google Scholar 

  2. DiPaola-Baranyi G, Guillet JE (1978) Estimation of polymer solubility parameters by gas chromatography. Macromolecules 11:228–235

    Article  CAS  Google Scholar 

  3. Voelkel A, Janas J (1993) Inverse gas chromatography in characterization of surfactants: determination of binary parameters. J Chromatogr A 654:135–141

    Article  CAS  Google Scholar 

  4. Al-Ghamdi A, Melibari M, Al-Saigh ZY (2006) Characterization of biodegradable polymers by inverse gas chromtography. II. Blends of amylopectin and poly(є-caprolactone). J Polym Environ 101:3076–3089

    CAS  Google Scholar 

  5. Huang JC (2004) Methods to determine solubility parameters of ploymers using inverse gas chromatography. J Appl Polym Sci 91:2894–2902

    Article  CAS  Google Scholar 

  6. Etxeberria A, Alfageme J, Uriarte C, Iruin JI (1992) Inverse gas chromatography in the characterization of polymeric materials. J Chromatogr 607:227–237

    Article  CAS  Google Scholar 

  7. Sreekanth TVM, Reddy KS (2008) Evaluation of solubility parameters for nonvolatile branched hydrocarbons by inverse gas chromatography. J Appl Polym Sci 108:1761–1769

    Article  CAS  Google Scholar 

  8. Sreekanth TVM, Reddy KS (2007) Analysis of solvent-solvent interactions in mixed isosteric solvents by inverse gas chromatography. Chromatographia 65:325–330

    Article  CAS  Google Scholar 

  9. Nastasović AB, Onjia AE (2008) Determination glass temperature of polymers by inverse gas chromatography. J Chromatogr A 1195:1–15

    Article  CAS  Google Scholar 

  10. Mukhopadhyay P, Schreiber HP (1995) Aspects of acid-base interactions and use of inverse gas chromatography. Colloids Surf 100:47–71

    Article  CAS  Google Scholar 

  11. Sun C, Berg JC (2003) A review of the different techniques for solid surface acid-base characterization. Adv Colloid Interface Sci 105:151–175

    Article  CAS  Google Scholar 

  12. Hansen CM (2000) Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton

    Google Scholar 

  13. Sarac A, Sakar D, Cankurtaran O, Karaman FY (2005) The ratio of crystallinity and thermodynamical interactions of polycaprolactone with some aliphatic esters and aromatic solvents by inverse gas chromatography. Polym Bull 53:349–357

    Article  CAS  Google Scholar 

  14. Zhao S, Zhang W, Zhang F, Li B (2008) Determination of Hansen solubility parameters for cellulose acrylate by inverse gas chromatography. Polym Bull 61:189–196

    Article  CAS  Google Scholar 

  15. Al-Saigh ZY (1997) Inverse gas chromatography for the characterization of polymer blends. Int J Polym Anal Charact R 3:249–291

    Article  CAS  Google Scholar 

  16. Santos JMRCA, Guthrie JT (2005) Analysis of interactions in multicomponent polymeric systems: the key-role of inverse gas chromatography. Mater Sci Eng R 50:79–107

    Article  CAS  Google Scholar 

  17. Melier MM, Kanis LA, de Lima JC, Pires ATN, Soldi V (2004) Poly(caprolactone triol) as plasticizer agent for cellulose acetate films: influence of the preparation procedure and plasticizer content on the physico-chemical properties. Polym Adv Technol 15:593–600

    Article  CAS  Google Scholar 

  18. Conder JR, Young CL (1979) Physico chemical measurement by gas chromatography. Wiley, NY

    Google Scholar 

  19. James AT, Martin AJP (1952) Gas liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. J Biochem 50:679–690

    CAS  Google Scholar 

  20. Yawa LC (1992) Thermodynamic and physical property data. Gulf Publ, Houston

    Google Scholar 

  21. Reid CR, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids. McGrew-Hill, NY

    Google Scholar 

  22. Tsonopoulos C (1974) An empirical correlation of second virial coefficients. J AlChE 20:263–272

    CAS  Google Scholar 

  23. Kozlowska MK, Domanska U, Lempert M, Rogalski M (2005) Determination of thermodynamic properties isotactic poly (1-butene) at infinite dilution using density and inverse gas chromatography. J Chromatogr A 1068:297–305

    Article  CAS  Google Scholar 

  24. Patterson D, Tewari YB, Schreiber HP, Guillet JE (1971) Application of gas-liquid chromatography to the thermodynamics of polymer solutions. Macromolecules 4:356–359

    Article  Google Scholar 

  25. Hildebrand JH, Scott RW, Prausnitz JM (1972) Regular and related solutions. Van Nostrand, NY

    Google Scholar 

  26. Price GJ, Shillcock IM (2002) Inverse gas chromatographic measurement of solubility parameters in liquid crystalline systems. J Chromatogr A 964:199–204

    Article  CAS  Google Scholar 

  27. Huang JC (2004) Methods to determine solubility parameters of polymers at high temperature using inverse gas chromatography. J Appl Polym Sci 94:1547–1555

    Article  CAS  Google Scholar 

  28. Adamska K, Voelkel A (2005) Inverse gas chromatographic determination of solubility parameters of excipients. Int J of Pharm 304:11–17

    Article  CAS  Google Scholar 

  29. Huang JC, Deanin RD (2005) Multicomponent solubility parameters of poly(vinyl chloride) and poly(tetramethylene glycol). Fluid Phase Equilib 227:125–133

    Article  CAS  Google Scholar 

  30. Guillet JE (1973) In: Purenell JH (ed) New developments in gas chromatography. Wiley-Interscience, NY, p 187

  31. Huang JC, Richard JS, Stanley HL (2005) Entropy-enthalpy compensations in solutions of dual character molecules with polymeric chromatographic liquid phases. J Phys Chem B 109:1736–1743

    Article  CAS  Google Scholar 

  32. Hansen CM, Beerbower A (1971). In: Encyclopedia of chem technology. Suppl vol 2. Wiley, NY

Download references

Acknowledgement

The authors (TVMS and KSR) are grateful to the University Grants Commission, New Delhi for financial support sanctioned in the form of a research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreekanth, T.V.M., Ramanaiah, S., Reddi Rani, P. et al. Thermodynamic characterization of poly (caprolactonediol) by inverse gas chromatography. Polym. Bull. 63, 547–563 (2009). https://doi.org/10.1007/s00289-009-0105-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0105-4

Keywords

Navigation