Skip to main content
Log in

Evidence for a role of bathymetry and emergence in speciation in the genus Glycera (Glyceridae, Polychaeta) from the deep Eastern Weddell Sea

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Polychaetes in the Southern Ocean are often thought to have wide distribution ranges on a horizontal and vertical scale. Here, this theory is tested for specimens commonly identified as the widely distributed glycerid Glycera kerguelensis using two molecular markers, the mitochondrial cytochrome oxidase c subunit I (COI) and the nuclear 28S rDNA. Identical morphospecies of three “populations” from three different habitats and two depth zones (abyssal plain 5,300 m, continental slope 2,000 m, sea mountain plateau 2,000 m) are compared. High genetic distances suggest the existence of three clades representing distinct species, identifying the investigated specimens as a complex comprising cryptic species with vertically restricted distribution. Two clades were found in sympatry on the Atka Bay slope in 2,000 m depth, one of these also found in similar depth on the plateau of the sea mountain Maud Rise. The third clade was limited to the abyssal plains (5,300 m) indicating the strong role of depth in the distribution of clades, possibly in conjunction with prevailing current systems. Evolution of the different clades is suggested to have resulted from a single emergence event with the origin of clades lying in the abyss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arntz WE, Thatje S, Gerdes D, Gili JM, Gutt J, Jacob U, Montiel A, Orejas C, Teixidó N (2005) The Antarctic-Magellan connection: macrobenthos ecology on the shelf and upper slope, a progress report. Sci Mar 69(Suppl. 2):237–269

    Google Scholar 

  • Audzijonyte A, Ovcarenko I, Bastrop R, Väinölä R (2008) Two cryptic species of the Hediste diversicolor group (Polychaeta, Nereididae) in the Baltic Sea, with mitochondrial signatures of different population histories. Mar Biol 155:599–612

    Article  Google Scholar 

  • Avise JC, Walker D (1999) Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome. Proc Nat Acad Sci USA 96:992–995

    Article  PubMed  CAS  Google Scholar 

  • Barroso R, Klautau M, Solé-Cava AM, Paiva PC (2010) Eurythoe complanata (Polychaeta: Amphinomidae), the ‘cosmopolitan’ fireworm, consists of at least three cryptic species. Mar Biol 157:69–80

    Article  Google Scholar 

  • Bersch M, Becker GA, Frey H, Koltermann KP (1992) Topographic effects of the Maud Rise on the stratification and the circulation of the Weddell Gyre. Deep-Sea Res 39(2):303–331

    Article  Google Scholar 

  • Blake JA, Narayanaswamy BE (2004) Benthic infaunal communities across the Weddell Sea Basin and South Sandwich Slope, Antarctica. Deep-Sea Res II 51:1797–1815

    Article  Google Scholar 

  • Bleidorn C, Kruse I, Albrecht S, Bartolomaeus T (2006) Mitochondrial sequence data expose the putative cosmopolitan polychaete Scolopos armiger (Annelida, Orbiniidae) as a species complex. BMC Evol Biol 6(47):1–13

    Google Scholar 

  • Böggemann M (2002) Revision of the Glyceridae Grube 1850 (Annelida: Polychaeta). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 555, Frankfurt am Main

  • Böggemann M (2005). Revision of the Goniadidae (Annelida, Polychaeta). Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg (Neue Folgen) 39, Frankfurt am Main

  • Böggemann M (2009) Polychaetes (Annelida) of the abyssal SE Atlantic. Org Divers Evol 9:251–428

    Google Scholar 

  • Braby CE, Rouse GW, Johnson SB, Jones WJ, Vrijenhoek RC (2007) Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whale-falls in Monterey Bay, California. Deep-Sea Res I 54:1773–1791

    Article  Google Scholar 

  • Brandt A, Brix S, Brökeland W, Choudhury M, Kaiser S, Malyutina M (2007a) Deep-sea isopod biodiversity, abundance, and endemism in the Atlantic sector of the Southern Ocean—results from the ANDEEP I–III expeditions. Deep-Sea Res II 54:1760–1775

    Article  Google Scholar 

  • Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday AJ, Hilbig B, Linse K, Thomson MRA, Tyler PA (2007b) The biodiversity of the deep Southern Ocean benthos. Philos Trans Roy Soc B 362:39–66

    Article  CAS  Google Scholar 

  • Brett CD (2006) Testing the effectiveness of the mtDNA Cytochrome c oxidase subunit 1 (COI) gene locus for indentifying species of Polychaete worm (Polychaeta: Annelida) in New Zealand. Master thesis, The University of Waikato, New Zealand

  • Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarct Sci 8:3–6

    Article  Google Scholar 

  • Chase MR, Etter RJ, Rex MA, Quattro JM (1998) Bathymetric patterns of genetic variation in a deep-sea protobranch bivalve, Deminucula atacellana. Mar Biol 131:301–308

    Article  CAS  Google Scholar 

  • Clarke A, Crame JA (1989) The origin of the Southern Ocean marine fauna. In: Crame JA (ed) Origins and evolution of the Antarctic biota. Geological Society of London Special Publication 47, pp 253–268

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi:10.1046/j.1365-294x.2000.01020.x

    Article  PubMed  CAS  Google Scholar 

  • Colgan DJ, Hutchings PA, Braune M (2006) A multigene framework for polychaete phylogenetic studies. Org Divers Evol 6:220–235

    Article  Google Scholar 

  • Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92–96

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed  CAS  Google Scholar 

  • Ellingsen KE, Brandt A, Ebbe B, Linse K (2007) Diversity and species distribution of polychaetes, isopods and bivalves in the Atlantic sector of the deep Southern Ocean. Pol Biol 30(10):1265–1273

    Article  Google Scholar 

  • Fauchald K, Jumars PA (1979) The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology—An Annual Review, vol 17, Aberdeen, pp 193–284

  • Foldvik A, Gammelsrød T (1988) Notes on Southern Ocean hydrography, sea-ice and bottom water formation. Palaeogeo Palaeoclim Palaeoecol 67:3–17

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • France SC, Kocher TD (1996) Geographic and bathymetric patterns of mitochondria116S rRNA sequence divergence among deep-sea amphipods, Eurythenes gryllus. Mar Biol 126:633–643

    Article  CAS  Google Scholar 

  • Glover AG, Källström B, Smith CR, Dahlgren TG (2005a) World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proc R Soc B 272:2587–2592

    Article  PubMed  Google Scholar 

  • Glover AG, Goetze E, Dahlgren TG, Smith CR (2005b) Morphology, reproductive biology and genetic structure of the whale-fall and hydrothermal vent specialist, Bathykurila guaymasensis Pettibone, 1989 (Annelida: Polynoidae). Mar Eco 26:223–234

    Article  Google Scholar 

  • Hartman O (1964) Polychaeta Errantia of Antarctica. Antarct Res Ser 3:1–131

    Google Scholar 

  • Hartman O (1967) Polychaetous annelids collected by the USNS ELTANIN and Staten Island cruises, chiefly from Antarctic Seas. Allan Hancock Monogr Mar Biol, 2:1–387, 51 pls

    Google Scholar 

  • Hartman O (1978) Polychaeta from the Weddell Sea Quadrant, Antarctica. Paper 4. In: Biology of the Antarctic Seas VI, Antarct Res Ser 26:125–223

  • Hartmann-Schröder G (1986) Die Polychaeten der 56. Reise der “Meteor” zu den South Shetland-Inseln (Antarktis). Mitt Hambg Zool Mus Inst 83:71–100

    Google Scholar 

  • Hartmann-Schröder G, Rosenfeldt P (1988) Die Polychaeten der „Polarstern”—Reise ANT III/2 in die Antarktis 1984. Teil 1: Euphrosinidae bis Chaetopteridae. Mitt Hambg Zool Mus Inst 85:25–72

    Google Scholar 

  • Hartmann-Schröder G, Rosenfeldt P (1990) Die Polychaeten der „Walther Herwig”-Reise 68/1 nach Elephant Island (Antarktis) 1985. Teil 1: Aphroditidae bis Cirratulidae. Mitt Hambg Zool Mus Inst 87:89–122

    Google Scholar 

  • Hartmann-Schröder G, Rosenfeldt P (1992) Die Polychaeten der „Polarstern”-Reise ANT V/1 in die Antarktis 1986. Teil 1: Euphrosinidae bis Iphitimidae. Mitt Hambg Zool Mus Inst 89:85–124

    Google Scholar 

  • Hebert PDN, Cywinsky A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Roy Soc London B. doi:10.1098/rspd.2002.2218

  • Held C (2000) Phylogeny and biogeography of Serolid Isopods (Crustacea, Isopoda; Serolidae) and the use of ribosomal expansion segments in molecular systematics. Mol Phylogen Evol 15(2):165–178

    Article  CAS  Google Scholar 

  • Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, pp 135–139

    Google Scholar 

  • Held C, Wägele JW (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaetiliidae). Sci Mar 69:175–181

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinform 1:754–755. doi:10.1093/bioinformatics/17.8.754

    Article  Google Scholar 

  • Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered. doi:10.1093/jhered/esm119

  • Hurtado LA, Lutz RA, Vrijenhoek RC (2004) Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents. Mol Ecol 13:2603–2615

    Article  PubMed  CAS  Google Scholar 

  • Janko K, Lecointre G, DeVries A, Couloux A, Cruaud C, Marshall C (2007) Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes?—Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol Biol 7:220. http://www.biomedcentral.com/1471-2148/7/220

    Google Scholar 

  • Knox GA, Lowry JK (1977) A comparison between the benthos of the Southern Ocean and the North Polar Ocean with special reference to the Amphipoda and the Polychaeta. In: Dunbar MJ (ed) Polar Oceans. Polar Oceans Conference 1974, Montreal, pp 423–462

  • Krabbe K, Leese F, Mayer C, Tollrian R, Held C (2009) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Pol Biol. doi:10.1007/s00300-009-0703-5

  • Linse K, Cope T, Lörz AN, Sands C (2007) Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (ArCOIdea: Philobryidae). Pol Biol 30(8):1059–1068

    Article  Google Scholar 

  • Mahon AR, Arango CP, Halanych KM (2008) Genetic diversity of Nymphon (Arthropoda: Pycnogonida: Nymphonidae) along the Antarctic Peninsula with a focus on Nymphon australe Hodgon 1902. Mar Biol 155:315–323

    Article  Google Scholar 

  • Manaranche R, Thieffry M, Israel M (1980) Effect of the venom of Glycera convoluta on the spontaneous quantal release of transmitter. J Cell Biol 85:446–458

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Gil J, Carreras-Carbonell J, Bhaud M (2008) Description of a new species of Mesochaetopterus (Annelida, Polychaeta, Chaetopteridae), with re-description of M. xerecus and an approach to the phylogeny of the family. Zool J Linn Soc London 152:201–225

    Article  Google Scholar 

  • McIntosh WC (1885) Report on the Annelida Polychaeta collected by H.M.S. Challenger during the years 1873–1876. Chall Rep 12:1–554

    Google Scholar 

  • Mincks SL, Dyal PL, Paterson GLJ, Smith CR, Glover AG (2009) A new species of Aurospio (Polychaeta, Spionidae) from the Antarctic shelf, with analysis of its ecology, reproductive biology and evolutionary history. Mar Eco 30:181–197

    Article  CAS  Google Scholar 

  • Munilla T, Soler Membrives A (2008) Check-list of the pycnogonids from Antarctic and sub-Antarctic waters: zoogeographic implications. Antarct Sci 21(2):99–111

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nygren A, Eklöf J, Pleijel F (2009) Arctic-boreal sibling species of Paranaitis (Polychaeta, Phyllodocidae). Mar Biol Res 5:315–327

    Article  Google Scholar 

  • Nylander JAA (2004) MRMODELTEST v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala

    Google Scholar 

  • Ockelmann KW, Vahl O (1970) On the biology of the polychaete Glycera alba, especially its burrowing and feeding. Ophelia 8:275–294

    Google Scholar 

  • Passamaneck YJ, Schander C, Halanych KM (2004) Investigation of molluscan phylogeny using large-subunit and small-subunit nuclear rRNA sequences. Mol Phylogen Evol 32:25–38

    Article  CAS  Google Scholar 

  • Paterson GLJ, Glover AG, Barrio Froján CRS, Whitaker M, Budaeva N, Chimonides J, Doner S (2009) A census of abyssal polychaetes. Deep-Sea Res II 56:1739–1746

    Article  Google Scholar 

  • Patti FP, Gambi MC (2001) Phylogeography of the invasive polychaete Sabella spallanzanii (Sabellidae) based on the nucleotide sequence of internal transcribed spacer 2 (ITS2) of nuclear rDNA. Mar Ecol Prog Ser 215:169–177

    Article  CAS  Google Scholar 

  • Platt HM, Warwick RM (1988) Freeliving marine nematodes. Part II. British Chromadorids. In: Kermack DM, Barnes RSK (eds) Synopsis of the British Fauna (new series), 38. E.J. Brill and Backhuys, Leiden, pp 14–21

    Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Quattro JM, Chase MR, Rex MA, Greig TW, Etter RJ (2001) Extreme mitochondrial DNA divergence within populations of the deep-sea gastropod Frigidoalvania brychia. Mar Ecol 139:1107–1113

    CAS  Google Scholar 

  • Raupach MJ, Wägele JW (2006) Distinguishing cryptic species in Antarctic Asselota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarct Sci 18(2):191–198

    Article  Google Scholar 

  • Rice SA, Karl S, Rice KA (2008) The Polydora cornuta complex (Annelida: Polychaeta) contains populations that are reproductively isolated and genetically distinct. Invertebr Biol 127(1):45–64

    Article  Google Scholar 

  • Röder A, Röder H (1974) Dreidimensionale Schwimmbewegungen (Helikoidalbewegung) bei polychaeten Meereswürmern. Teil I Antriebsmechanismus und Bewegungsablauf. Nat Mus 104(12):372–378

    Google Scholar 

  • Rogers AD (2007) Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philos Trans Roy Soc B 362:2191–2214

    Article  CAS  Google Scholar 

  • Rouse G, Pleijel F (eds) (2006) Reproductive biology and phylogeny of Annelida. Science Publishers, Enfeld, NH, USA

    Google Scholar 

  • Sands CJ, Convey P, Linse K, McInnes SJ (2008) Assessing meiofaunal variation among individuals utilizing morphological and molecular approaches: an example using the Tardigrada. BMC Ecol 8:7. doi:10.1186/1472-6785-8-7

    Article  PubMed  Google Scholar 

  • Schmidt H, Westheide W (1999) Genetic relationships (RAPD-PCR) between geographically separated populations of the “cosmopolitan” interstitial polychaete Hesionides gohari (Hesionidae) and the evolutionary origin of the freshwater species Hesionides riegerorum. Biol Bull 196:216–226

    Article  Google Scholar 

  • Schmidt H, Westheide W (2000) Are the meiofaunal polychaetes Hesionides arenaria and Stygocapitella subterranea true cosmopolitan species?—results of RAPD-PCR investigations. Zool Scr 29:17–27

    Article  Google Scholar 

  • Schröder M, Fahrbach E (1999) On the structure and the transport of the Eastern Weddell Gyre. Deep-Sea Res 46:501–527

    Article  Google Scholar 

  • Schüller M, Ebbe B (2007) Global distributional patterns of selected deep-sea polychaeta (Annelida) from the Southern Ocean. Deep-Sea Res II 54(16–17):1737–1751

    Article  Google Scholar 

  • Schulze SR, Rice SA, Simon JL, Karl SA (2000) Evolution of poecilogony and the biogeography of North American populations of the polychaete Streblospio. Evolution 54:1247–1259

    PubMed  CAS  Google Scholar 

  • Shanks AL (2001) An identification guide to the larval marine invertebrates of the Pacific Northwest. Oregon State University Press, Corvallis, OR

    Google Scholar 

  • Simpson M (1962) Reproduction of polychaete Glycera dibranchiata at Solomons, Maryland. Biol Bull 123:396–411

    Article  Google Scholar 

  • Soler i Membrives A, Turpaeva E, Munilla T (2009) Pycnogonids of the Eastern Weddell Sea (Antarctica), with remarks on their bathymetric distribution. Pol Biol. doi:10.1007/s00300-009-0635-0

  • Strathmann MF (1987) Reproduction and development of marine invertebrates of the northern pacific coast: data and methods for the study of eggs, embryos, and larvae. University of Washington Press, Seattle, WA

    Google Scholar 

  • Struck TH, Purschke G, Halanych KM (2006) Phylogeny of Eunicida (Annelida) and exploring data congruence using a partition addition bootstrap alteration (PABA) approach. Syst Biol 55(1):1–20

    Article  PubMed  Google Scholar 

  • Struck TH, Schult N, Kusen T, Hickman E, Bleidorn C, McHugh D, Halanych KM (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol Biol 7(57). doi:10.1186/1471-2148-7-57

  • Struck TH, Nesnidal MP, Purschke G, Halanych KM (2008) Detecting possibly saturated positions in 18S and 28S sequences and their influence on phylogenetic reconstruction of Annelida (Lophotrochozoa). Mol Phylogen Evol 48(2):628–645

    Article  CAS  Google Scholar 

  • Strugnell J, Rogers AD, Prodöhl PA, Collins MA, Allcock AL (2008) The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24:853–860

    Article  Google Scholar 

  • Swofford DL (2002) PAUP* Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Thatje S, Hillenbrand CD, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20(10):534–540

    Article  PubMed  Google Scholar 

  • Thatje S, Hillenbrand CD, Mackensen A, Larter R (2008) Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89(3):682–692

    Article  PubMed  Google Scholar 

  • Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mar Ecol 17:5194–5197

    Google Scholar 

  • Virgilo M, Fauvelot C, Constantini F, Abbiati M, Backeljau T (2009) Phylogeography of the common ragworm Hediste diversicolor (Polychaeta: Nereididae) reveals cryptic diversity and multiple colonization events across its distribution. Mol Ecol 18:1980–1994

    Article  Google Scholar 

  • von Soosten C, Schmidt H, Westheide W (1998) Genetic variability and relationships among geographically widely separated populations of Petitia amphophthalma (Polychaeta: Syllidae). Results from RAPD-PCR investigations. Mar Biol 131:659–669

    Article  Google Scholar 

  • Westheide W, Haβ-Cordes E, Krabusch M, Müller M (2003) Ctenodrilus serratus (Polychaeta: Ctenodrilidae) is a truly amphi-atlantic meiofauna species—evidence from molecular data. Mar Biol 142:637–642

    CAS  Google Scholar 

  • Wiklund H, Glover AG, Johannessen PJ, Dahlgren TG (2009) Cryptic speciation at organic-rich marine habitats: a new bacteriovore annelid from whale-fall and fish farms in the North-East Atlantic. Zool J Linn Soc 155:774–785

    Article  Google Scholar 

  • Wilson WH (1991) Sexual reproductive modes in polychaetes: classification and diversity. Bull Mar Sci 48:500–516

    Google Scholar 

  • Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904

    Article  Google Scholar 

  • Wilson NG, Schrödl M, Halanych KM (2009) Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol Ecol 18:965–984

    Article  Google Scholar 

  • Zardus JD, Etter RJ, Chase MR, Rex MA, Boyle EE (2006) Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Mol Ecol 15:639–651

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am greatly indebted to the scientists and laboratory technicians at the International Barcode of Life, University of Guelph, whose help ensured the achievement of the barcoding. Special thanks go to Christy Carr and Dirk Steinke for their close collaboration and constant effort. Also, I would like to thank the Boehringer Ingelheim Fonds, Rachel Grant, and Katrin Linse as representatives of CAML, as well as CeDAMar, for giving me the opportunity to take the samples and later barcode them in collaboration with iBOL. Many thanks go to Florian Leese, Christoph Mayer, and Chester Sands for their help with the sequence analyses and fruitful discussions. Sequencing was carried out at the Biodiversity Institute of Ontario and supported by Genome Canada through the Ontario Genomics Institute. This study was further financed by help of CeDAMar (Census for the Diversity of Abyssal Marine Life), CAML (Census of Antarctic Marine Life), the Boehringer Ingelheim Fonds, and the German Science Foundation (SCHU 2443/2-1+2). This manuscript is contribution number 58 to the Census of Antarctic Marine Life and number 145 to ANDEEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Schüller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

300_2010_913_MOESM1_ESM.pdf

ESMTab 1 Pairwise genetic distances among COI sequences of G. cf kerguelensis (592bps)—right upper half: Kimura-2-Parameter model, in percent, left lower half: GTR+G in percent. Supplementary material 1 (PDF 26 kb)

300_2010_913_MOESM2_ESM.pdf

ESMTab 2 Changes in COI amino acid sequences between clades of G. cf kerguelensis (background: gray—polar, white—non-polar; fond: bold—acid, regular—neutral, abbreviations: *—functional changes, A—alanine, E—glutamic acid, I—isoleucine, L—leucine, M—methionine, S—serine, V—valine). Supplementary material 2 (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schüller, M. Evidence for a role of bathymetry and emergence in speciation in the genus Glycera (Glyceridae, Polychaeta) from the deep Eastern Weddell Sea. Polar Biol 34, 549–564 (2011). https://doi.org/10.1007/s00300-010-0913-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0913-x

Keywords

Navigation