Skip to main content

Advertisement

Log in

Relative summer abundances and distribution of Pseudocalanus spp. (Copepoda: Calanoida) adults in relation to environmental variables in the Nordic Seas and Svalbard fjords

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

North Atlantic average sea surface temperatures have increased since the 1970s, and how the marine environment is responding to the temperature increase is of considerable interest. Several zooplankton taxa have been reported to have undergone shifts in distributional ranges driven by climate change. We present a study on interannual variability of adult Pseudocalanus spp. from the Norwegian Sea and two fjords of Spitsbergen, collected between 2003 and 2009. Species are identified based on the combination of morphological features and molecular methods (mitochondrial cytochrome oxidase I gene, COI and nuclear internal transcribed spacer 1, ITS 1 sequences). Based on multivariate statistics, our observations suggest that Pseudocalanus species differ markedly in their environmental preferences; three species appear to be oceanic: P. elongatus is associated with relatively high temperatures and shares domain with P. minutus, P. moultoni tolerates a wide range of temperatures and is widely distributed, while P. acuspes is a coastal/shelf species that is strongly associated with cold and less saline waters. We conclude that with a climate change and increasing sea water temperatures, P. elongatus is likely to shift its distribution northward; for P. acuspes, it may result in smaller populations in the future; while P. minutus and P. moultoni may not be affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarbakke ONS, Bucklin A, Halsband C, Norrbin F (2011) Discovery of Pseudocalanus moultoni (Frost, 1989) in northeast Atlantic waters based on mitochondrial COI sequence variation. J Plankton Res 33:1487–1495

    Article  CAS  Google Scholar 

  • Aarbakke ONS, Bucklin A, Halsband C, Norrbin F (2014) Comparative phylogeography and demographic history of five sibling species of Pseudocalanus (Copepoda: Calanoida) in the North Atlantic Ocean. J Exp Mar Biol Ecol 461:479–488

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edwards M (2002) Reorganization of north atlantic marine copepod biodiversity and climate. Science 296:1692–1694

    Article  CAS  PubMed  Google Scholar 

  • Beaugrand G, Edwards M, Legendre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. Proc Natl Acad Sci USA 107:10120–10124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucklin A, Frost B, Bradford-Grieve J, Allen L, Copley N (2003) Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Mar Biol 142:333–343

    Article  CAS  Google Scholar 

  • Bucklin A, Nishida S, Schnack-Schiel S et al (2010) A census of zooplankton of the global ocean. In: McIntyre A (ed) Life in the world’s oceans: diversity, distribution, and abundance. Blackwell Publishing Ltd., UK, pp 247–265

  • Carstensen J, Weydmann A, Olszewska A, Kwasniewski S (2012) Effects of environmental conditions on the biomass of Calanus spp. in the Nordic Seas. J Plankton Res 34:951–966

    Article  Google Scholar 

  • Carter JC (1965) The ecology of the calanoid copepod Pseudocalanus minutus Kroyer in Tessiarsuk, a coastal meromictic lake of northern Labrador. Limnol Oceanogr 10:345–353

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Plymouth, UK

    Google Scholar 

  • Cottier FR, Tverberg V, Inall ME, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjord, Svalbard. J Geophys Res. doi:10.1029/2004JC002757

    Google Scholar 

  • Cottier FR, NilsenF Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607. doi:10.1029/2007GL029948

    Article  Google Scholar 

  • Figueroa DF (2011) Phylogenetic analysis of Ridgewaya (copepoda: Calanoida) from the Galapagos and of a new species from the Florida keys with a reevaluation of the phylogeny of calanoida. J Crustac Biol 31:153–165

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Fossum P, Melle W, Falkenhaug T, Naustvoll L-J, Dalpadado P (2012) Plankton i norske havområder. Institute of Marine Research, Bergen (in Norwegian)

    Google Scholar 

  • Frost B (1989) A taxonomy of the marine calanoid copepod genus Pseudocalanus. Can J Zool 67:525–551

    Article  Google Scholar 

  • Grabbert S, Renz J, Hirche HJ, Bucklin A (2010) Species-specific PCR discrimination of species of the calanoid copepod Pseudocalanus, P. acuspes and P. elongatus, in the Baltic and North Seas. Hydrobiologia 652:289–297

    Article  Google Scholar 

  • Halsband C, Hirche HJ (2001) Reproductive cycles of dominant calanoid copepods in the North Sea. Mar Ecol Prog Ser 209:219–229

    Article  Google Scholar 

  • Hansen B, Østerhus S, Quadfasel D, Turrel W (2004) Already the day after tomorrow? Science 305:953–954

    Article  CAS  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Johannesen E, Ingvaldsen RB, Bogstad B, Dalpadado P, Eriksen E, Gjøsæter H, Knutsen T, Skern-Mauritzen M, Stiansen JE (2012) Changes in Barents Sea ecosystem state, 1970–2009: climate fluctuations, human impact, and trophic interactions. ICES J Mar Sci 69:880–889

    Article  Google Scholar 

  • Laakmann S, Gerdts G, Erler R, Knebelsberger T, Martínez Arbizu P, Raupach MJ (2013) Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol Ecol Resour 13:862–876

    Article  CAS  PubMed  Google Scholar 

  • Lischka S, Hagen W (2005) Life histories of the copepods Pseudocalanus minutus, P. acuspes (calanoida) and Oithona similis (cyclopoida) in the arctic Kongsfjorden (Svalbard). Polar Biol 28:910–921

    Article  Google Scholar 

  • McLaren I, Laberge E, Corkett C, Sevigny J-M (1989) Life cycles of four species of Pseudocalanus in Nova Scotia. Can J Zool 67:552–558

    Article  Google Scholar 

  • Norrbin MF (1991) Gonad maturation as an indication of seasonal cycles for several species of small copepods in the Barents Sea. Polar Res 10:421–432

    Article  Google Scholar 

  • Norrbin MF (1994) Seasonal patterns in gonad maturation, sex ratio and size in some small, high-latitude copepods: implications for overwintering tactics. J Plankton Res 16:115–131

    Article  Google Scholar 

  • Parrish CC, French VM, Whiticar MJ (2012) Lipid class and fatty acid composition of copepods (Calanus finmarchicus, C. glacialis, Pseudocalanus sp., Tisbe furcata and Nitokra lacustris) fed various combinations of autotrophic and heterotrophic protists. J Plankton Res 34:356–375

    Article  CAS  Google Scholar 

  • Pendleton D, Pershing A, Brown MW, Mayo ChA, Kenney RD, Record NR, Cole TVN (2009) Regional-scale mean copepod concentration indicates relative abundance of north Atlantic right whales. Mar Ecol Prog Ser 378:211–225

    Article  Google Scholar 

  • Renz J, Hirche H-J (2006) Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the central Baltic sea: I. Seasonal and spatial distribution. Mar Biol 148:567–580

    Article  Google Scholar 

  • Renz J, Peters J, Hirche HJ (2007) Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the central Baltic Sea: II. Reproduction, growth and secondary production. Mar Biol 151:515–527

    Article  Google Scholar 

  • Renz J, Mengedoht D, Hirche HJ (2008) Reproduction, growth and secondary production of Pseudocalanus elongatus Boeck (Copepoda, Calanoida) in the southern North Sea. J Plankton Res 30:511–528

    Article  CAS  Google Scholar 

  • Robert D, Castonguay M, Fortier L (2009) Effects of preferred prey density and temperature on feeding success and recent growth in larval mackerel of the southern Gulf of St. Lawrence. Mar Ecol Prog Ser 377:227–237

    Article  Google Scholar 

  • Robert D, Levesque K, Gagné JA, Fortier L (2011) Change in prey selectivity during the larval life of Atlantic cod in the southern Gulf of St Lawrence. J Plankton Res 33:195–200

    Article  Google Scholar 

  • Robert D, Pepin P, Dower JF, Fortier L (2013) Individual growth history of larval atlantic mackerel is reflected in daily condition indices. ICES J Mar Sci. doi:10.1093/icesjms/fst011

    Google Scholar 

  • Saetre R, Mork M (1981) The Norwegian Coastal Current, vol 1. University of Bergen, Norway

    Google Scholar 

  • Schlitzer R (2011) Ocean data view. http://odv.awi.de

  • Steele M, Ermold W, Zhang J (2008) Arctic ocean surface warming trends over the past 100 years. Geophys Res Lett 35:L02614. doi:10.1029/2007GL031651

    Article  Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows User’s guide: Software for Cannonical Community Ordination (version 4.5). Microcomputer Power (Ithaca, NY, USA), p 500

  • Tranter D, Fraser J (1968) Zooplankton isampling. The UNESCO Press, Paris

    Google Scholar 

  • Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool Stud 43:255–266

    Google Scholar 

  • Vermaire JC, Pisaric MFJ, Thienpont JR, Mustaphi CJC, Kokelj SV, Smol JP (2013) Arctic climate warming and sea ice declines lead to increased storm surge activity. Geophys Res Lett. doi:10.1002/grl.50191

    Google Scholar 

  • Walczowski W, Piechura J (2011) Influence of the West Spitsbergen Current on the local climate. Int J Climatol 31:1088–1093

    Article  Google Scholar 

  • Walczowski W, Piechura J, Goszczko I, Wieczorek P (2012) Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES J Mar Sci 69:864–869

    Article  Google Scholar 

  • Waring GT, Josephson E, Fairfield B et al (2009) US Atlantic and Gulf of Mexico marine mammal stock assessments 2002. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Region, Northeast Fisheries Science Center

  • Weydmann A, Søreide JE, Kwasniewski S, Leu E, Falk-Petersen S, Berge J (2013) Ice-related seasonality in zooplankton community composition in a high Arctic fjord. J Plankton Res 35:831–842

    Article  Google Scholar 

  • Weydmann A, Carstensen J, Goszczko I, Dmoch K, Olszewska A, Kwaśniewski S (2014) Shift towards the dominance of boreal species in the Arctic: inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Mar Ecol Prog Ser 501:41–52

    Article  Google Scholar 

  • Willis K, Cottier F, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:39–54

    Article  Google Scholar 

  • Willis K, Cottier F, Kwasniewski S (2008) Impact of warm water advection on the winter zooplankton community in an Arctic fjord. Polar Biol 31:475–481

    Article  Google Scholar 

  • Yamaguchi A, Ikeda T, Shiga N (1998) Population structure and life cycle of Pseudocalanus minutus and Pseudocalanus newmani (copepoda: Calanoida) in Toyama Bay, southern Japan Sea. Plankton Biol Ecol 45:183–193

    Google Scholar 

Download references

Acknowledgments

Zooplankton and CTD data are a part of the multiyear collection of the Institute of Oceanology, Polish Academy of Sciences; we thank Ilona Goszczko from the Ocean Circulation Laboratory for providing CTD data. This research project was supported by Grant No. 2011/03/B/NZ8/02876 from the National Science Centre, Poland and the Polish State Committee for Scientific Research Grant No. N N304 119834.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Weydmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aarbakke, O.N.S., Fevolden, SE. & Weydmann, A. Relative summer abundances and distribution of Pseudocalanus spp. (Copepoda: Calanoida) adults in relation to environmental variables in the Nordic Seas and Svalbard fjords. Polar Biol 40, 51–59 (2017). https://doi.org/10.1007/s00300-016-1923-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1923-0

Keywords

Navigation