Skip to main content
Log in

Morphological and flow cytometric characterization of leukocytes from the notothenioid teleosts Dissostichus eleginoides, Notothenia coriiceps, and Trematomus hansoni

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

To date, the adaptive immune response of the notothenioid fishes of the Sub- and High-Antarctic has received little attention. Here we characterize leukocyte preparations derived from head (pronephric) kidney, spleen, and intestine of three notothenioid species, Dissostichus eleginoides, Notothenia coriiceps, and Trematomus hansoni. Cells were collected from head kidney, spleen, and intestine, and were fixed in paraformaldehyde and analyzed by flow cytometry and optical microscopy. The three species displayed typical leukocyte populations composed of lymphocytes, granulocytes, monocytes/macrophages and thrombocytes with a peculiar organ distribution and peculiar flow cytometric patterns. This work represents the first characterization of cells involved in immune reactions in the investigated species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abelli L, Picchietti S, Romano N, Mastrolia L, Scapigliati G (1997) Immunohistochemistry of gut-associated lymphoid tissue of the sea bass Dicentrarchus labrax (L.). Fish Shellfish Immunol 7:235–246

    Article  Google Scholar 

  • Abelli L, Baldassini MR, Mastrolia L, Scapigliati G (1999) Immunodetection of lymphocyte subpopulations involved in allograft rejection in a teleost, Dicentrarchus labrax (L.). Cell Immunol 191:152–160

    Article  PubMed  CAS  Google Scholar 

  • Abelli L, Coscia MR, De Santis A, Zeni C, Oreste U (2005) Evidence for hepato-biliary transport of immunoglobulin in the antarctic teleost fish Trematomus bernacchii. Dev Comp Immunol 29:431–442

    Article  PubMed  CAS  Google Scholar 

  • Danilova N, Hohman VS, Kim EH, Steiner LA (2000) Immunoglobulin variable-region diversity in the zebrafish. Immunogenetics 52:81–91

    Article  PubMed  CAS  Google Scholar 

  • Ellis AE (1977) The leucocytes of fish: a review. J Fish Biol 11:435–491

    Article  Google Scholar 

  • Esteban MA, Munoz J, Meseguer J (2000) Blood cells of sea bass (Dicentrarchus labrax L.). Flow cytometric and microscopic studies. Anat Rec 258:80–89

    Article  PubMed  CAS  Google Scholar 

  • Hine P (1992) The granulocytes of fish. Fish Shellfish Immunol 2:79–98

    Article  Google Scholar 

  • Joosten P, Tiemersma E, Threels A, Dhieux-Caumartin-Caumartin C, Rombout J (1997) Oral vaccination of fish against Vibrio anguillarum using alginate microparticles. Fish Shellfish Immunol 7:471–485

    Article  Google Scholar 

  • Kollner B, Fischer U, Rombout JH, Taverne-Thiele JJ, Hansen JD (2000) Potential involvement of rainbow trout thrombocytes in immune functions a study using a panel of monoclonal antibodies, RT-PCR. Dev Comp Immunol 28:1049–1062

    Article  CAS  Google Scholar 

  • Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28:28

    Google Scholar 

  • Marsden M, Secombes CJ (1997) The influence of vaccine preparations on the induction of antigen specific responsiveness in rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol 7:455–469

    Article  Google Scholar 

  • Matsunaga T, Rahman A (1998) What brought the adaptive immune system to vertebrates?—The jaw hypothesis and the seahorse. Immunol Rev 166:177–186

    Article  PubMed  CAS  Google Scholar 

  • Meloni S, Mazzini M, Buonocore F, Scapigliati G (2000) Humoral immunity in antarctic fish: serum immunoglobulin analysis in seven species and antigen-induced response in Trematomus bernacchii (Teleostea, Notothenioidea). Ital J Zool 67:79–84

    Article  CAS  Google Scholar 

  • Meseguer J, Esteban MA, Aguilleiro B (1991) Stromal cells, macrophages and lymphoid cells in the head-kidney of sea bass (Dicentrarchus labrax L.). An ultrastructural study. Arch Histol Cytol 54:299–309

    Article  PubMed  CAS  Google Scholar 

  • Meseguer J, Lopezruiz A, Esteban M (1994) Cytochemical characterization of leukocytes from the saltwater teleost, gilthead seabream (Sparus aurata L). Histochem 102:37–44

    Article  CAS  Google Scholar 

  • Nelson J (1994) Fishes of the world, 3rd edn. Wiley, New York

    Google Scholar 

  • Picchietti S. Terribili FR, Mastrolia L, Scapigliati G, Abelli L (1997) Expression of lymphocyte antigenic determinants in developing GALT of the sea bass Dicentrarchus labrax (L.). Anat Embriol 196:457–463

    Article  Google Scholar 

  • Pucci B, Coscia MR, Oreste U (2003) Characterization of serum immunoglobulin M of the Antarctic teleost Trematomus bernacchii. Comp Biochem Physiol B Biochem Mol Biol. 135:349–57

    Article  PubMed  CAS  Google Scholar 

  • Rast JP, Litman GW (1994) T-cell receptor gene homologs are present in the most primitive jawed vertebrates. Proc Natl Acad Sci USA 91:9248–9252

    Article  PubMed  CAS  Google Scholar 

  • Romano N, Ceccariglia S, Mastrolia L, Mazzini M (2002) Cytology of lymphomyeloid head kidney of antarctic fishes Trematomus bernacchii (Nototheniidae) and Chionodraco hamatus (Channicthyidae). Tissue Cell 14:115–125

    Google Scholar 

  • Rombout JHVM, Both HE, Taverne-Thiele JJ (1989) Immunological importance of the second gut segment of carp. II. Characteristics of mucosal leucocytes. J Fish Biol 35:167–178

    Article  Google Scholar 

  • Rombout JHWM, Taverne N, Van-De-Kamp M, Taverne-Thiele AJ (1993a) Differences in mucus and serum immunoglobulin of carp (Cyprinus carpio L.). Dev Comp Immunol 17:309–317

    Article  CAS  Google Scholar 

  • Rombout JHVM, Taverne-Thiele JJ, Villena A (1993b) The gut-associated lymphoid tissue (GALT) of carp (Cyprinus carpio L.): an immunocytochemical study. Dev Comp Immunol 17:55–66

    Article  CAS  Google Scholar 

  • Rombout JHWM, Joosten PHM, Engelsma MY, Vos AP, Taverne N, Taverne-Thiele JJ (1998) Indications for a distinct putative T cell population in mucosal tissue of carp (Cyprinus carpio L.). Dev Comp Immunol 22:63–77

    Article  PubMed  CAS  Google Scholar 

  • Rombout JHWM, Huttenhuis HBT, Picchietti S, Scapigliati G (2005) Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol (in press)

  • Scapigliati G, Mazzini M, Mastrolia L, Romano N, Abelli L (1995) Production and characterisation of a monoclonal antiboby against the thymocytes of the sea bass, Dicentrarchus labrax (L.) Fish Shellfish Immunol 5:393–405

    Article  Google Scholar 

  • Scapigliati G, Romano N, Picchietti S, Mazzini M, Mastrolia L, Scalia D, Abelli L (1996) Monoclonal antibodies against sea bass Dicentrarchus labrax (L) immunoglobulins: Immunolocalisation of immunoglobulin-bearing cells and applicability in immunoassays. Fish Shellfish Immunol 6:383–401

    Article  Google Scholar 

  • Scapigliati G, Chausson F, Cooper EL, Scalia D, Mazzini M (1997) Qualitative and quantitative analysis of serum immunoglobulins of four antarctic fish species. Polar Biol 18:209–213

    Article  Google Scholar 

  • Scapigliati G, Romano N, Abelli L, Meloni S, Ficca AG, Buonocore F, Bird S, Secombes CJ (2000) Immunopurification of T-cells from sea bass Dicentrarchus labrax (L.). Fish Shellfish Immunol 10:329–341

    Article  PubMed  CAS  Google Scholar 

  • Scapigliati G, Meloni S, Buonocore F, Bossù P, Prugnoli D, Secombes CJ (2003) Immunopurification of B lymphocytes from sea bass Dicentrarchus labrax (L.). Mar Biotechnol 5:214–221

    Article  PubMed  CAS  Google Scholar 

  • Scapigliati G, Mazzini M, Buonocore F (2005) Biological activity of cytokines: an evolutionary perspective. Curr Pharmacol Design (in press)

  • Secombes C (1990) Isolation of salmonid macrophages and analysis of their killing activity. In: Stolen J, Fletcher T, Anderson D, Robertson B, van Muiswinkel W (eds) Techniques in fish immunology. SOS Publications, New Jersey pp 137–154

    Google Scholar 

  • Secombes C, Zou J, Daniels G, Cunningham C, Koussonadis A, Kemp G (1998) Rainbow trout cytokine and cytokine receptor genes. Immunol Rev 166:333–340

    Article  PubMed  CAS  Google Scholar 

  • Slierendrecht WJ, Lorenzen N, Glamann J, Koch C, Rombout JHWM (1995) Immunocytochemical analysis of a monoclonal antibody specific for rainbow trout (Oncorhynchus mykiss) granulocytes and thrombocytes. Vet Immunol Immunopathol 46:349–360

    Article  PubMed  CAS  Google Scholar 

  • Stafford JL, McLauchlan PE, Secombes CJ, Ellis AE, Belosevic M. (2001) Generation of primary monocyte-like cultures from rainbow trout head kidney leukocytes. Dev Comp Immunol 25:447–459

    Article  PubMed  CAS  Google Scholar 

  • Veiga ML, Egami MI, Ranzani-Paiva MJ, Rodrigues EL (2002) Morphological and ultrastructural study of the thrombocytes and leukocyte granulocytes of Salminus maxillosus (Characiformes, Characidae). J Submicrosc Cytol Pathol 34:397–402

    PubMed  CAS  Google Scholar 

  • Warr G (1995) The immunoglobulin genes of fish. Dev Comp Immunol 19:1–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The ICEFISH cruise was supported by National Science Foundation grant OPP-0132032 to H. William Detrich (Northeastern University). Publication number is 8 from the ICEFISH Cruise of 2004 (H.W.D. Chief Scientist, RVIB Nathaniel B. Palmer). This work was also supported by the Italian Antarctic Research Project (PNRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Scapigliati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scapigliati, G., Fochetti, R., Tiberi, M. et al. Morphological and flow cytometric characterization of leukocytes from the notothenioid teleosts Dissostichus eleginoides, Notothenia coriiceps, and Trematomus hansoni . Polar Biol 29, 872–877 (2006). https://doi.org/10.1007/s00300-006-0126-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0126-5

Keywords

Navigation