Skip to main content
Log in

Growth distribution and surface pH patterns along maize roots

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The distribution of elongation and surface pH patterns along the primary roots of maize (cv. LG 11), maintained vertically in humid air (darkness, 22°C), have been analysed quantitatively. A new technique employing Sephadex G 25 beads containing a pH indicator dye (bromocresol purple), was used for measuring both the growth gradient of the roots (Sephadex beads as markers) and at the same time, the surface pH changes (referring to a standard scale). The optimal axial growth was located between 2 and 4 mm from the tip. This coincides with the optimal decrease in surface pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bridges, I.G., Wilkins, M.B. (1973) Acid-induced growth and the geotropic response of the wheat node. Planta 114, 331–339

    Google Scholar 

  • Brown, R., Broadbent, D. (1950) The development of cells in the growing zones of the root. J. Exp. Bot. 1, 249–263

    Google Scholar 

  • Chanson, A., Pilet, P.E. (1982) Transport and metabolism of [214-C]abscisic acid in maize roots. Planta 154, 556–561

    Google Scholar 

  • Edwards, K., Scott, T.K. (1974) Rapid growth responses of corn root segments effect of pH on elongation. Planta 119, 27–37

    Google Scholar 

  • Erickson, R.O. (1976) Modeling of plant growth. Annu. Rev. Plant Physiol. 27, 407–434

    Google Scholar 

  • Erickson, R.O., Goddard, D.R. (1951) An analysis of root growth in cellular and biochemical terms. Growth 15 (Suppl.), 89–116

    Google Scholar 

  • Erickson, R.O., Sax, K.B. (1956) Elemental growth rate of the primary root of Zea mays. Proc. Am. Philos. Soc. 487–498

  • Evans, M.L., Vesper, M.J. (1980) An improved method for detecting auxin-induced hydrogen ion efflux from corn cole-optile segments. Plant Physiol. 66, 561–565

    Google Scholar 

  • Franssen, J.M., Cooke, S.A., Digby, J., Firn, R.D. (1981) Measurements of differential growth causing phototropic curvature of coleoptile and hypocotyls. Z. Pflanzenphysiol. 103, 207–216

    Google Scholar 

  • Franssen, J.M., Firn, R.D., Digby, J. (1982) The role of the apex in the phototropic curvature of Avena coleoptiles: positive curvature under conditions illumination. Planta 155, 281–286

    Google Scholar 

  • Gabella, M., Pilet, P.E. (1978) Effect of pH on georeaction and elongation of maize root segments. Physiol. Plant. 44, 157–160

    Google Scholar 

  • Gandar, P.W. (1980) The analysis of growth and cell production in root apices. Bot. Gaz. (Chicago) 141, 131–138

    Google Scholar 

  • Goodwin, R.H., Stepka, W. (1945) Growth and differenciation in the root tip of Phleum pratense. Am. J. Bot. 32, 36–46

    Google Scholar 

  • Green, P.B. (1976) Growth and cell pattern formation on an axis: critique of concepts, terminology and modes of study. Bot. Gaz. (Chicago) 137, 187–202

    Google Scholar 

  • Hager, A., Menzel, H., Krauss, A. (1971) Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta 100, 47–75

    Google Scholar 

  • Hejnowicz, Z., Heinemann, B., Sievers, A. (1977) Tip growth: patterns of growth rate and stress in the Chara rhizoid. Z. Pflanzenphysiol 81, 424–494

    Google Scholar 

  • Juniper, B.E., French, A. (1970) The fine structure of the cells that perceive gravity in the root tip of maize. Planta 95, 314–319

    Google Scholar 

  • Karpov, E.A., Potapov, N.G. (1975) Reducing activity of the root surfaces in corn plants in connection with its differentiation and absorption capacity (in russian). Fiziol. Rast. 22, 198–304

    Google Scholar 

  • Lin, W., Hanson, J.B. (1974) Increase in electrogenic membrane potential with washing of corn root tissue. Plant Physiol. 54, 799–801

    Google Scholar 

  • Marschner, H., Römheld, V., Ossenberg-Neuhans, H. (1982) Rapid method for measuring changes in pH and reducing processes along roots of intact plants. Z. Pflanzenphysiol. 105, 407–416

    Google Scholar 

  • Moloney, M.M., Elliott, M.C., Cleland, R.E. (1981) Acid-growth effects in maize roots: evidence for a link between auxin-economy and proton extrusion in the control of root growth. Planta 152, 285–291

    Google Scholar 

  • Moloney, M.M., Pilet, P.E., Marrè, M.T., Romani, G. (1982) Transmembrane electrical potentials in growing maize roots. Planta 156, 407–412

    Google Scholar 

  • Mulkey, T.J., Evans, M.L. (1981) Geotropism in corn roots: evidence for its mediation by differential acid efflux. Science 212, 70–71

    Google Scholar 

  • Mulkey, T.J., Kuzmanoff, K.M., Evans, M.L. (1981) Correlations between proton-efflux patterns and growth patterns during geotropism and phototropism in maize and sunflower. Planta 152, 239–241

    Google Scholar 

  • Pilet, P.E. (1960) Gradients de croissance et problèmes auxiniques. I. Critères référence. Bull. Soc. Bot. Suisse 70, 268–296

    Google Scholar 

  • Pilet, P.E. (1961) Gradients de croissance et problèmes auxiniques. II. Etats statique et dynamique. Bull. Soc. Bot. Suisse 71, 25–40

    Google Scholar 

  • Pilet, P.E. (1977) Growth inhibitors in growing and geostimulated maize roots. In: Plant growth regulation, pp. 115–128, Pilet, P.E., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pilet, P.E. (1979) Kinetics of the light-induced georeactivity of maize roots. Planta 145, 403–404

    Google Scholar 

  • Pilet, P.E., Meylan, S. (1953) Polarité électrique, auxines et physiologie des racines du Lens. Bull. Soc. Bot. Suisse 63, 430–466

    Google Scholar 

  • Pilet, P.E., Nougarède, A. (1970) RNA, structure, infrastructure et géotropisme racinaires. Physiol. Vég. 8, 277–300

    Google Scholar 

  • Pilet, P.E., Senn, A. (1980) Root growth gradients: a critical analysis. Z. Pflanzenphysiol. 99, 121–130

    Google Scholar 

  • Rayle, D.L., Cleland, R.E. (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol. 46, 250–253

    Google Scholar 

  • Rayle, D.L., Cleland, R.E. (1977) Control of plant cell enlargement by hydrogen ions. Curr. Top. Dev. Biol. 11, 187–214

    Google Scholar 

  • Römheld, V., Marschner, H. (1981) Iron deficiency stress induced morphological and physiological changes in root tips on sunflower. Physiol. Plant. 53, 354–360

    Google Scholar 

  • Rougier, M. (1976) Secrétion de polysaccharides dans l'apex radiculaire de mais: étude radioautographique par incorporation de fucose tritié. J. Microsc. Biol. Cell. 26, 161–166

    Google Scholar 

  • Sachs, J. (1873) Über das Wachstum der Haupt- und Nebenwurzeln. Arb. Bot. Inst. Würzburg 1, 385–474

    Google Scholar 

  • Scott, B.I.H., Martin, D.W. (1962) Bioelectric fields of bean roots and their relation to salt accumulation. Aust. J. Biol. Sci. 15, 83–100

    Google Scholar 

  • Uren, N.C. (1981) Chemical reduction of an insoluble higher oxide of manganese by plant roots. J. Plant Nutr. 4, 65–71

    Google Scholar 

  • Weisenseel, M.H., Dorn, A., Jaffe, L.F. (1979) Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Plant. Physiol. 64, 512–518

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilet, PE., Versel, JM. & Mayor, G. Growth distribution and surface pH patterns along maize roots. Planta 158, 398–402 (1983). https://doi.org/10.1007/BF00397731

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397731

Key words

Navigation