Skip to main content
Log in

Bacterial niches inside seeds of Cucumis melo L.

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Seeds are inhabited by diverse bacterial and fungal taxa whose colonization patterns are little understood. We hypothesized, however, that specific niches within seeds host microbes.

Methods

In this study, the putative presence of bacteria, inhabiting the seed endosphere of an angiosperm, the melon Cucumis melo reticulatus group cv. ‘Dulce’, was examined by scanning electron microscopy (SEM) and confocal laser-scanning microscopy coupled with double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH).

Results

SEM images showed microbial-like structures in different tissues and FISH revealed endophytic bacteria colonizing the outer and inner seed parts, on perisperm/endosperm envelope, inside the cotyledons as parts of the embryo, and, to a lesser extent, inside embryonic hypocotyl-root axis tissues. Alphaproteobacteria were shown to inhabit the seed coat and the envelope surrounding the embryonic hypocotyl-root tissues, but could not be seen in the cotyledons, whereas Betaproteobacteria were only detected in the outer seed coat. Some Gammaproteobacteria were also seen in the outer seed coat, but were mainly visualized in the cotyledons with a few inside the seed’s embryonic hypocotyl-root tissues, among other bacteria. Firmicutes were visualized inside the seed coat, but mostly inside the cotyledon tissues, on the perisperm/endosperm envelope and inside the embryonic hypocotyl-root axis tissues. Microscopy revealed Actinobacteria inside the inner and outer seed coat and inside the embryonic parts such as cotyledons, with a few inside the hypocotyl-root axis.

Conclusions

This is the first demonstration of niches for the most active groups of bacteria inhabiting different seed tissues of an angiosperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Hunault G, Simoneau P, Jacques M-A (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81:1257–1266

    Article  PubMed  PubMed Central  Google Scholar 

  • Barret M, Guimbaud J-F, Darrasse A, Jacques M (2016) Plant microbiota affects seed transmission of phytopathogenic microorganisms. Mol Plant Pathol 17:791–795

    Article  PubMed  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148

    PubMed  PubMed Central  Google Scholar 

  • Burger Y, Sa’ar U, Paris HS, Lewinsohn E, Katzir N, Tadmor Y, Schaffer AA (2006) Genetic variability for valuable fruits quality traits in Cucumis melo. Israel J Plant Sci 54:37–41

    Article  Google Scholar 

  • Campisano A, Ometto L, Compant S, Pancher M, Antonielli L, Yousaf S, Anfora G, Pertot I, Varotto C, Sessitsch A, Rota-Stabelli O (2014) Interkingdom transfer of the acne causing agent, Propionibacterium acnes, from human to grapevine. Mol Biol Evol 31:1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. karst). FEMS Microbiol Lett 244:341–345

    Article  CAS  PubMed  Google Scholar 

  • Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, Gangl H, Sessitsch A (2011a) In situ visualization of endophytic bacteria, particularly Bacillus spp. inside fruits and seeds of grapevine plants. Acta Hortic 938:23–27

    Google Scholar 

  • Compant S, Mitter B, Coli-Mull JG, Gangl H, Sessitsch A (2011b) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Compant S, Muzammil S, Lebrihi A, Mathieu F (2013) Visualization of grapevine root colonization by the Saharan soil isolate Saccharothrix algeriensis NRRL B-24137 using DOPE-FISH microscopy. Plant Soil 370:583–591

    Article  CAS  Google Scholar 

  • Cope-Selby N, Cookson A, Squance M, Donnison I, Flavell R, Farrar K (2016) Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy. doi:10.1111/gcbb.12364

    Google Scholar 

  • Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  PubMed  Google Scholar 

  • Dent KC, Stephen JR, Finch-Savage WE (2004) Molecular profiling of microbial communities associated with seeds of Beta vulgaris subsp. vulgaris (sugar beet). J Microbiol Methods 56:17–26

  • Donnarumma F, Capuana M, Vettori C, Petrini G, Giannini R, Indorato C, Mastromei G (2010) Isolation and characterisation of bacterial colonies from seeds and in vitro cultures of Fraxinus spp. from Italian sites. Plant Biol 13:169–176

    Article  Google Scholar 

  • Dutta B, Avci U, Hahn MG, Walcott RR (2012) Location of Acidovorax citrulli in infested watermelon seeds is influenced by the pathway of bacterial invasion. Phytopathology 102:461–468

  • Ebeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46:617–629

    Article  Google Scholar 

  • Ferreira A, Quecine M, Lacava P, Oda S, Azevedo J, Araújo W (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14

    Article  CAS  PubMed  Google Scholar 

  • Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63:418–428

    Article  PubMed  Google Scholar 

  • Gandhi M, Golding S, Yaron S, Matthews KR (2001) Use of green fluorescent protein expressing Salmonella Stanley to investigate survival, spatial location, and control on alfalfa sprouts. J Food Prot 64:1891–1898

  • Glassner H, Zchori-Fein E, Compant S, Sessitsch A, Katzir N, Portnoy V, Yaron S (2015) Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.). FEMS Microbiol Ecol 91(7):fiv074

    Article  PubMed  Google Scholar 

  • Granér G, Persson P, Meijer J, Alström S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 224:269–276

    Article  PubMed  Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. CABI Publishing, New York, pp 87–119

    Google Scholar 

  • Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

  • Holland MA, Polacco JC (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu Rev Plant Biol 45(1):197–209

    Article  CAS  Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272–1275

    Article  CAS  PubMed  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannadan S, Rudgers JA (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol 22:706–713

    Article  Google Scholar 

  • Khalaf EM, Raizada MN (2016) Taxonomic and functional diversity of cultured seed associated microbes of the cucurbit family. BMC Microbiol 16:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan P, Bhat R, Kush A, Ravikumar P (2012) Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. J Appl Microbiol 113:308–317

    Article  CAS  PubMed  Google Scholar 

  • Kukkurainen S, Leino A, Vähämiko S, Kärkkäinen HR, Ahanen K, Sorvari S (2005) Occurrence and location of endophytic bacteria in garden and wild strawberry. Hortscience 40:348–352

    Google Scholar 

  • Küsel K, Pinkart HC, Drake HL, Devereux R (1999) Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl Environ Microbiol 65:5117–5123

    PubMed  PubMed Central  Google Scholar 

  • Malinowski DP, Belesky DP, Lewis GC (2008) Abiotic stresses in endophytic grasses. In: Neotyphodium in Cool-Season Grasses. Blackwell Publishing Ltd, pp 187–199

  • Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 21:86–100

    Article  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremed 11:251–267

  • Müller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456

    Article  PubMed  Google Scholar 

  • Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oehrle NW, Karr DB, Kremer RJ, Emerich DW (2000) Enhanced attachment of Bradyrhizobium japonicum to soybean through reduced root colonization of internally seed borne microorganisms. Can J Microbiol 46:600–606

    Article  CAS  PubMed  Google Scholar 

  • Okunishi S, Sako K, Mano H, Imamura A, Morisaki H (2005) Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes Environ 20:168–177

    Article  Google Scholar 

  • Pleban S, Ingel F, Chet I (1995) Control of Rhizoctonia solani and Sclerotium rolfsii in the green house using endophytic Bacillus sp. Eur J Plant Pathol 101:665–672

    Article  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408

    Article  CAS  Google Scholar 

  • Ramakrishna P, Amritphale D (2005) The perisperm-endosperm envelope in Cucumis: structure, proton diffusion and cell wall hydrolysing activity. Ann Bot 96(5):769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roller C, Wagner M, Amann R, Ludwig W, Schleifer K-H (1994) In situ probing of gram-positive bacteria with high DNA G + C content using 23S rRNA- targeted oligonucleotides. Microbiology 140:2849–2858

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, López-López A, Martínez J, Rogel MA, Toledo I, Martínez-Romero I (2010) Seed bacterial endophytes: common genera, seed-to-seed variability and their possible role in plants. Acta Hortic 938:39–48

    Google Scholar 

  • Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21:107–124

    Article  Google Scholar 

  • Rudgers JA, Swafford AL (2009) Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic Appl Ecol 10:43–51

    Article  Google Scholar 

  • Salanenka YA, Goffinet MC, Taylor AG (2009) Structure and histochemistry of the micropylar and chalazal regions of the perisperm embryo envelope of cucumber seeds associated with solute permeability and germination. J Am Soc Hortic Sci 134:479–487

    Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seed borne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selosse MA, Schardl CL (2007) Fungal endophytes of grasses: hybrids rescued by vertical transmission? An evolutionary perspective. New Phytol 173:452–458

    Article  PubMed  Google Scholar 

  • Sobolev CS, Orner VA, Arias RS (2013) Distribution of bacterial endophytes in peanut seeds obtained from axenic and control plant material under field conditions. Plant Soil 371:367–376

    Article  CAS  Google Scholar 

  • Stoecker K, Dorninger C, Daims H, Wagner M (2010) Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol 76:922–926

    Article  CAS  PubMed  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2013) Changes in the population of seed bacteria of transgenerationally Cd-exposed Arabidopsis thaliana. Plant Biol 15:971–981

    Article  CAS  PubMed  Google Scholar 

  • Truyens S, Jambon I, Croes S, Janssen J, Weyens N, Mench M, Carleer R, Cuypers A, Vangronsveld J (2014) The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal contaminated soils. Int J Phytoremed 16:643–659

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega F, Pava-Ripoll M, Posada F, Buyer J (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45:371–380

    Article  PubMed  Google Scholar 

  • Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, Shen L (2014) Bacterial community compositions of tomato (Lycopersicum esculentum mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30:835–845

    Article  CAS  PubMed  Google Scholar 

  • Yim K-O, Bradford KJ (1998) Callose deposition is responsible for apoplastic semipermeability of the endosperm envelope of muskmelon seeds. Plant Physiol 118:83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to COST action FA1103 and Camille Vainstein for English correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Compant.

Ethics declarations

Conflict of interest

Stéphane Compant is Section Editor in Plant and Soil and Guest Editor of the special issue. This does not, however, interfere with the reviewing process.

Additional information

Responsible Editor: Eric B. Nelson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glassner, H., Zchori-Fein, E., Yaron, S. et al. Bacterial niches inside seeds of Cucumis melo L.. Plant Soil 422, 101–113 (2018). https://doi.org/10.1007/s11104-017-3175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3175-3

Keywords

Navigation