Skip to main content

Advertisement

Log in

Seasonal variation in CH4 emission and its 13C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Although invasions by non-native species represent a major threat to biodiversity and ecosystem functioning, little attention has been paid to the potential impacts of these invasions on methane (CH4) emission and its 13C-CH4-isotope signature in salt marshes. An invasive perennial C4 grass Spartina alterniflora has spread rapidly along the east coast of China since its introduction from North America in 1979. Since its intentional introduction to the Jiuduansha Island in the Yangtze River estuary in 1997, S. alterniflora monocultures have become the dominant component of the Jiuduansha’s vegetation, where monocultures of the native plant Scirpus mariqueter (a C3 grass) used to dominate the vegetation for more than 30 years. We investigated seasonal variation in soil CH4 emission and its 13C-CH4-isotope signature from S. alterniflora and S. mariqueter marshes. The results obtained here show that S. alterniflora invasion increased soil CH4 emissions compared to native S. mariqueter, possibly resulting from great belowground biomass of S. alterniflora, which might have affected soil microenvironments and /or CH4 production pathways. CH4 emissions from soils in both marshes followed similar seasonal patterns in CH4 emissions that increased significantly from April to August and then decreased from August to October. CH4 emissions were positively correlated with soil temperature, but negatively correlated with soil moisture for both S. alterniflora and S. mariqueter soils (p < 0.05). The δ13C values of CH4 from S. alterniflora, and S. mariqueter soils ranged from -39.0‰ to -45.0‰, and -37.3‰ to -45.7‰, respectively, with the lowest δ13C values occurring in August in both marshes. Although the leaves, roots and soil organic matter of S. alterniflora had significantly higher δ13C values than those of S. mariqueter, S. alterniflora invasion did not significantly change the 13C- isotopic signature of soil emitted CH4 (p > 0.05). Generally, the CH4 emissions from both invasive S. alterniflora and native S. mariqueter soils in the salt marshes of Jiuduansha Island were very low (0.01–0.26 mg m-2 h-1), suggesting that S. alterniflora invasion along the east coast of China may not be a significant potential source of atmospheric CH4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

This study was financially supported by National Basic Research Program of China (No. 2006CB403305), National Science Foundation of China (No. 30670330), and Ministry of Education of China (No. 20050246013). We thank Dr. Weixin Ding, Xiaoping Li and Leyi Li for lab analysis, and Chenghuan Wang, Zhichen Wang, Yongjian Gu, Haiqiang Guo and Jing Xie for their assistance with field sampling

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Cheng or Bo Li.

Additional information

Responsible Editor: Klaus Butterbach-Bahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Luo, Y., Xu, Q. et al. Seasonal variation in CH4 emission and its 13C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland. Plant Soil 327, 85–94 (2010). https://doi.org/10.1007/s11104-009-0033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0033-y

Keywords

Navigation