Skip to main content
Log in

Impact of understory mosses and dwarf shrubs on soil micro-arthropods in a boreal forest chronosequence

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Plant species and functional groups are known to drive the community of belowground invertebrates but whether their effects are consistent across environmental gradients is less well understood. We aimed to determine if plant effects on belowground communities are consistent across a successional gradient in boreal forests of northern Sweden.

Methods

We performed two plant removal experiments across ten stands that form a 364-year post-fire boreal forest chronosequence. Through the removal of plant functional groups (mosses or dwarf shrubs) and of individual species of dwarf shrubs, we aimed to determine if the effects of functional groups and species on the soil micro-arthropod community composition varied across this chronosequence.

Results

Removal of mosses had a strong negative impact on the abundance and diversity of Collembola and Acari and this effect was consistent across the chronosequence. Only specific Oribatid families declined following dwarf-shrub species removals, with some of these responses being limited to old forest stands.

Conclusions

Our results show that the impacts of plants on micro-arthropods is consistent across sites that vary considerably in their stage of post-fire ecosystem development, despite these stages differing greatly in plant productivity, fertility, humus accumulation and moss development. In addition, mosses are a much stronger driver of the micro-arthropod community than vascular plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bardgett RD (2002) Causes and consequences of biological diversity in soil. Zoology 105:367–374

    Article  PubMed  Google Scholar 

  • Blok D, Heijmans M, Schaepman-Strub G, van Ruijven J, Parmentier FJW, Maximov TC, Berendse F (2011) The cooling capacity of mosses: controls on water and energy fluxes in a Siberian Tundra site. Ecosystems 14:1055–1065

    Article  Google Scholar 

  • Bokhorst S, Huiskes A, Convey P, Aerts R (2007) Climate change effects on organic matter decomposition rates in ecosystems from the Maritime Antarctic and Falkland Islands. Global Change Biol 13:2642–2653

    Article  Google Scholar 

  • Bokhorst S, Huiskes AHL, Convey P, Bodegom PMV, Aerts R (2008) Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol Biochem 40:1547–1556

    Article  CAS  Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    Article  CAS  Google Scholar 

  • Chauvat M, Trap J, Perez G, Delporte P, Aubert M (2011) Assemblages of Collembola across a 130-year chronosequence of beech forest. Soil Organisms 83:405–418

    Google Scholar 

  • Cornelissen JHC, Perez-Harguindeguy N, Diaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phyt 143:191–200

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy H, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, van Bodegom P, Brovkin V, Alex Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti V, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, Verhoef HA, Bezemer TM, van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713

    Article  PubMed  Google Scholar 

  • DeLuca TH, Nilsson MC, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecol 133:206–214

    Article  Google Scholar 

  • DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson MC (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecol 152:121–130

    Article  Google Scholar 

  • Diaz S, Symstad AJ, Chapin FS, Wardle DA, Huenneke LF (2003) Functional diversity revealed by removal experiments. Trends Ecol Evolut 18:140–146

    Article  Google Scholar 

  • Eisenhauer N, Reich PB (2012) Above- and below-ground plant inputs both fuel soil food webs. Soil Biol Biochem 45:156–160

    Article  CAS  Google Scholar 

  • Eisenhauer N, Schadler M (2011) Inconsistent impacts of decomposer diversity on the stability of aboveground and belowground ecosystem functions. Oecol 165:403–415

    Article  Google Scholar 

  • Eisenhauer N, Sabais ACW, Scheu S (2011) Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biol Biochem 43:1697–1704

    Article  CAS  Google Scholar 

  • Endlweber K, Scheu S (2007) Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biol Fertil Soils 43:741–749

    Article  Google Scholar 

  • Filser J (2002) The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia 46:234–245

    Google Scholar 

  • Fjellberg A (1998) The Collembola of Fennoscandia and Denmark Part 1: Poduromorpha, vol 35. Fauna Entomologica Scandinavica. Brill, Leiden

  • Fjellberg A (2007) The Collembola of Fennoscandia and Denmark Part 2: Entomobryomorpha and Symphypleona. Fauna Entomologica Scandinavica, vol 42. Brill, Leiden

  • Gisin H (1943) Ökologie und Lebensgmeinschaften der Collembolen im Schweizer Exkursiongebiet Basels. Rev Suisse Zool 50:131–224

    Google Scholar 

  • Gundale MJ, Wardle DA, Nilsson MC (2010) Vascular plant removal effects on biological N fixation vary across a boreal forest island gradient. Ecol 91:1704–1714

    Article  Google Scholar 

  • Gundale MJ, Wardle DA, Nilsson MC (2012) The effect of altered macroclimate on N-fixation by boreal feather mosses. Biol Lett 8:805–808

    Article  PubMed Central  PubMed  Google Scholar 

  • Hågvar S (1982) Collembola in Norwegian coniferous forest soils 1. Relations to plant communities and soil fertility. Pedobiologia 24:255–296

    Google Scholar 

  • Hågvar S (1984) Six common mite species (Acari) in Norwegian coniferous forest soils: relations to vegetaion types and soil characteristics. Pedobiologia 27:355–364

    Google Scholar 

  • Hågvar S, Abrahamsen G (1984) Collembola in Norwegian coniferous forest soils III. Relations to soil chemistry. Pedobiologia 27:331–339

    Google Scholar 

  • Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020

    Article  CAS  PubMed  Google Scholar 

  • Hyodo F, Kusaka S, Wardle DA, Nilsson MC (2013) Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. Plant Soil 364:111–119

    Article  Google Scholar 

  • Jackson BG, Nilsson MC, Wardle DA (2013) The effects of the moss layer on the decomposition of intercepted vascular plant litter across a post-fire boreal forest chronosequence. Plant Soil

  • Krab EJ, Berg MP, Aerts R, van Logtestijn RSP, Cornelissen JHC (2013) Vascular plant litter input in subarctic peat bogs changes Collembola diets and decomposition patterns. Soil Biol Biochem 63:106–115

    Article  CAS  Google Scholar 

  • Krantz GW, Walter DE (2009) A manual of Acarology. Texas Tech University Press, Lubbock

    Google Scholar 

  • Lang SI, Cornelissen JHC, Klahn T, Van Logtestijn RSP, Broekman R, Schweikert W, Aerts R (2009) An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J Ecol 97:886–900

    Article  CAS  Google Scholar 

  • Liefting M, Ellers J (2008) Habitat-specific differences in thermal plasticity in natural populations of a soil arthropod. Biol J Linnean Soc 94:265–271

    Article  Google Scholar 

  • Lindo Z, Nilsson M-C, Gundale MJ (2013) Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Global Change Biol 19:2022–2035

    Article  Google Scholar 

  • Marshall CB, McLaren JR, Turkington R (2011) Soil microbial communities resistant to changes in plant functional group composition. Soil Biol Biochem 43:78–85

    Article  CAS  Google Scholar 

  • McLaren JR, Turkington R (2010) Ecosystem properties determined by plant functional group identity. J Ecol 98:459–469

    Article  Google Scholar 

  • Milcu A, Partsch S, Langel R, Scheu S (2006) The response of decomposers (earthworms, springtails and microorganisms) to variations in species and functional group diversity of plants. OIKOS 112:513–524

    Article  Google Scholar 

  • Nielsen UN, Osler GHR, Campbell CD, Burslem D, van der Wal R (2010a) The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. J Biogeography 37:1317–1328

    Article  Google Scholar 

  • Nielsen UN, Osler GHR, Campbell CD, Neilson R, Burslem D, van der Wal R (2010b) The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. Plos One 5:6

    Article  Google Scholar 

  • Nielsen UN, Osler GHR, Campbell CD, Burslem D, van der Wal R (2012) Predictors of fine-scale spatial variation in soil mite and microbe community composition differ between biotic groups and habitats. Pedobiologia 55:83–91

    Article  Google Scholar 

  • Pande YD, Berthet P (1973) Studies on the food and feeding habits of soil oribatei in a black pine plantation. Oecol 12:413–426

    Article  Google Scholar 

  • Parkinson D, Visser S, Whittaker JB (1979) Effects of Collembolan grazing on fungal colonization of leaf litter. Soil Biol Biochem 11:529–535

    Article  Google Scholar 

  • Perez G, Decaëns T, Dujardin G, Akpa-Vinceslas M, Langlois E, Chauvat M (2013) Response of collembolan assemblages to plant species successional gradient. Pedobiologia

  • Proctor MCF (2000) Physiological ecology. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 225–247

    Chapter  Google Scholar 

  • Sabais ACW, Scheu S, Eisenhauer N (2011) Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecol 37:195–202

    Article  Google Scholar 

  • Salmane I, Brumelis G (2008) The importance of the moss layer in sustaining biological diversity of Gamasina mites in coniferous forest soil. Pedobiologia 52:69–76

    Article  Google Scholar 

  • Salmon S, Mantel J, Frizzera L, Zanella A (2006) Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. Forest Ecol Manag 237:47–56

    Article  Google Scholar 

  • Scheu S, Schulz E (1996) Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodivers Conserv 5:235–250

    Article  Google Scholar 

  • Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774

    Article  CAS  Google Scholar 

  • Seastedt TR, Crossley DA (1980) Effects of microarthropods on the seasonal dynamics of nutrients in forest litter. Soil Biol Biochem 12:337–342

    Article  CAS  Google Scholar 

  • Siepel H, De Ruiter-Dijkman EM (1993) Feeding guilds of Oribatid mites based on their carbohydrase activities. Soil Biol Biochem 25:1491–1497

    Article  Google Scholar 

  • Spehn E, Joshi J, Schmid B, Alphei J, Körner C (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224:217–230

    Article  CAS  Google Scholar 

  • St John MG, Wall DH, Behan-Pelletier VM (2006) Does plant species co-occurrence influence soil mite diversity? Ecol 87:625–633

    Article  Google Scholar 

  • St John MG, Bellingham PJ, Walker LR, Orwin KH, Bonner KI, Dickie IA, Morse CW, Yeates GW, Wardle DA (2012) Loss of a dominant nitrogen-fixing shrub in primary succession: consequences for plant and below-ground communities. J Ecol 100:1074–1084

    Article  Google Scholar 

  • Suding KN, Miller AE, Bechtold H, Bowman WD (2006) The consequence of species loss on ecosystem nitrogen cycling depends on community compensation. Oecol 149:141–149

    Article  Google Scholar 

  • Tybirk K, Nilsson MC, Michelson A, Kristensen HL, Shevtsova A, Strandberg MT, Johansson M, Nielsen KE, Rils-Nielsen T, Strandberg B, Johnsen I (2000) Nordic Empetrum dominated ecosystems: Function and susceptibility to environmental changes. Ambio 29:90–97

    Google Scholar 

  • Urcelay C, Diaz S, Gurvich DE, Chapin FS, Cuevas E, Dominguez LS (2009) Mycorrhizal community resilience in response to experimental plant functional type removals in a woody ecosystem. J Ecol 97:1291–1301

    Article  Google Scholar 

  • Van der Putten WH, Vet LEM, Harvey JA, Wackers FL (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evolut 16:547–554

    Article  Google Scholar 

  • Van Dooremalen C, Berg MP, Ellers J (2013) Acclimation responses to temperature vary with vertical stratification: implications for vulnerability of soil-dwelling species to extreme temperature events. Global Change Biol 19:975–984

    Article  Google Scholar 

  • Van Straalen NM, Rijninks PC (1982) The efficiency of Tullgren apparatus with respect to interpreting seasonal changes in age structure of soil arthropod populations. Pedobiologia 24:197–209

    Google Scholar 

  • Walker LR, Moral. Rd (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press

  • Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Funct Ecol 23:454–462

    Article  Google Scholar 

  • Wardle DA, Zackrisson O (2005) Effects of species and functional group loss on island ecosystem properties. Nature 435:806–810

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, Watson RN, Ghani A (1999) Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol Monograph 69:535–568

    Article  Google Scholar 

  • Wardle DA, Jonsson M, Bansal S, Bardgett RD, Gundale MJ, Metcalfe DB (2012) Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. J Ecol 100:16–30

    Article  Google Scholar 

  • Weigmann G (2006) Hornmilben (Oribatida). Tierwelt Deutschlands 76. Goecke and Evers, Keltern

  • Zackrisson O (1980) Forest fire history: ecological significance and dating problems in the North Swedish Boreal Forest. In: The fire history workshop, Laboratory of Tree-Ring Research, University of Arizona, Tucson, October 20–24, 1980

  • Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the Boreal forest. Oikos 77:10–19

    Article  Google Scholar 

  • Zackrisson O, DeLuca TH, Nilsson MC, Sellstedt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecol 85:3327–3334

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Morgan Karlsson for help with setting up and maintaining the experiment. This work was funded by a Wallenberg Scholars Award to DW and a grant from the Swedish Research Council Formas to MCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stef Bokhorst.

Additional information

Responsible Editor: Gera Hol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 1073 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokhorst, S., Wardle, D.A., Nilsson, MC. et al. Impact of understory mosses and dwarf shrubs on soil micro-arthropods in a boreal forest chronosequence. Plant Soil 379, 121–133 (2014). https://doi.org/10.1007/s11104-014-2055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2055-3

Keywords

Navigation