Skip to main content

Advertisement

Log in

Studying the impact of living roots on the decomposition of soil organic matter in two different forestry-drained peatlands

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Forestry drainage is the main management practice of peatlands in Finland. The influence of drainage and management on carbon (C) fluxes may vary, e.g., depending on the original peatland type. We have studied C fluxes in two forestry-drained peatlands with different nutrient status.

Methods

Our hypothesis that the differences in the C balance between these two sites can be attributed to differences in soil respiration rates, and in particular to the priming effect, was tested with laboratory microcosm flux measurements and 14C isotopic partitioning method. A two-pool mixing-model based on the natural difference in the respired 14CO2 between the peat and plants was employed.

Results

We found no statistically significant priming effect in either nutrient-poor or nutrient-rich soil, respectively.

Conclusions

As no differences in priming effect were found, we can conclude that the nutrient status of the sites does not affect the priming effect in the peat soils studied here, thus our results suggest that organic soils do not support priming to the same extent as mineral soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181. doi:10.2307/176901

    Article  Google Scholar 

  • Baggs EM (2006) Partitioning the components of soil respiration: a research challenge. Plant Soil 284:1–5. doi:10.1007/s11104-006-0047-7

    Article  CAS  Google Scholar 

  • Basiliko N, Stewart H, Roulet NT, Moore TR (2012) Do root exudates enhance peat decomposition? Geomicrobiol J 29:374–378. doi:10.1080/01490451.2011.568272

    Article  Google Scholar 

  • Berglund K (1996) Cultivated organic soils in Sweden: properties and amelioration. Dissertation, Department of Soil Science, Swedish Agriculture University Report 28

  • Biasi C, Tavi NM, Jokinen S, Shurpali N, Hämäläinen K, Jungner H, Oinonen M, Martikainen PJ (2011) Differentiating sources of CO2 from organic soil under bioenergy crop cultivation: a field-based approach using 14C. Soil Biol Biochem 43:2406–2409. doi:10.1016/j.soilbio.2011.08.00

    Article  CAS  Google Scholar 

  • Biasi C, Pitkämäki A, Tavi N, Koponen H, Martikainen PJ (2012) An isotope approach based on 13C pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatland. Boreal Environ Res 17:184–192

    CAS  Google Scholar 

  • Biasi C, Jokinen S, Marushchak ME, Hämäläinen K, Trubnikova T, Oinonen M, Martikainen PJ (2014) Microbial respiration in Arctic upland and peat soils as a source of atmospheric carbon dioxide. Ecosystems 17:112–126. doi:10.1007/s10021-013-9710-z

    Article  CAS  Google Scholar 

  • Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 4. doi: 10.3389/fmicb.2013.00216

  • Ekblad A, Nordgren A (2002) Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability? Plant Soil 242:115–122. doi:10.1023/A:1019698108838

    Article  CAS  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320. doi:10.1111/j.1461-0248.2004.00579.x

    Article  Google Scholar 

  • Fry B 2006 Stable Isotope Ecology. Springer ISBN 978-0-387-30513-4

  • Gaudinski J, Trumbore S, Davidson E, Zheng S (2000) Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times sequestration rates and partitioning of fluxes. Biogeochemistry 51:33–69. doi:10.1023/A:1006301010014

    Article  Google Scholar 

  • Göttlicher SG, Steinmann K, Betson NR, Högberg P (2006) The dependence of soil microbial activity on recent photosynthate from trees. Plant Soil 287:85–94. doi:10.1007/s11104-006-0062-8

    Article  CAS  Google Scholar 

  • Guenet B, Neill C, Bardoux G, Abbadie L (2010) Is there a linear relationship between priming effect intensity and the amount of organic matter input? Appl Soil Ecol 46:436–442. doi:10.1016/j.apsoil.2010.09.006

    Article  Google Scholar 

  • Hahn V, Högberg P, Buchmann N (2006) 14C - a tool for separation of autotrophic and heterotrophic soil respiration. Glob Chang Biol 12:972–982. doi:10.1111/j.1365-2486.2006.001143.x

    Article  Google Scholar 

  • Hämäläinen K, Fritze H, Jungner H, Karhu K, Oinonen M, Sonninen E, Spetz P, Tuomi M, Vanhala P, Liski J (2010) Molecular sieve sampling of CO2 from decomposition of soil organic matter for AMS radiocarbon measurements. Nucl Instrum Meth B 268:1067–1069. doi:10.1016/j.nimb.2009.10.099

    Article  CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Hardie SML, Garnett MH, Fallick AE, Rowland AP, Ostle NJ, Flowers TH (2011) Abiotic drivers and their interactive effect on the flux and carbon isotope (C-14 and delta C-13) composition of peat-respired CO2. Soil Biol Biochem 43:2432–2440. doi:10.1016/j.soilbio.2011.08.010

    Article  CAS  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292. doi:10.1038/nature06591

    Article  PubMed  CAS  Google Scholar 

  • Heinonsalo J, Jørgensen KS, Sen R (2001) Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community structure and bacterial carbon utilization profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbiol Ecol 36:73–84. doi:10.1016/S0168-6496(01)00120-9

    Article  PubMed  CAS  Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21(10):548–554. doi:10.1016/j.tree.2006.06.004

    Article  PubMed  Google Scholar 

  • Jaatinen K, Fritze H, Laine J, Laiho R (2007) Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Glob Chang Biol 13:491–510. doi:10.1111/j.1365-2486.2006.01312.x

    Article  Google Scholar 

  • Kuzyakov Y (2002) Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods. Soil Biol Biochem 34:1621–1631. doi:10.1016/S0038-0717(02)00146-3

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448. doi:10.1016/j.soilbio.2005.08.020

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925. doi:10.1016/S0038-0717(01)00117-1

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Hill P, Jones D (2007) Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305. doi:10.1007/s11104-006-9162-8

    Article  CAS  Google Scholar 

  • Laiho R (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024. doi:10.1016/j.soilbio.2006.02.017

    Article  CAS  Google Scholar 

  • Laiho R, Sallantaus T, Laine J (1999) The effect of forestry drainage on vertical distributions of major plant nutrients in peat soils. Plant Soil 207:169–181. doi:10.1023/A:1026470212735

    Article  Google Scholar 

  • Laiho R, Vasander H, Penttilä T, Laine J (2003) Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Glob Biogeochem Cytol 17(2):1–11. doi:10.1029/2002GB002015

    Google Scholar 

  • Lindén A, Heinonsalo J, Buchmann N, Oinonen M, Sonninen E, Hilasvuori E, Pumpanen J (2014) Contrasting effects of increased carbon input on boreal SOM decomposition with and without presence of living root system of P. sylvestris L. Plant Soil 377:145–158. doi:10.1007/s11104-013-1987-3

    Article  CAS  Google Scholar 

  • Lohila A, Minkkinen K, Aurela M, Tuovinen J-P, Penttilä T, Ojanen P, Laurila T (2011) Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences 8:3203–3218. doi:10.5194/bg-8-3203-2011

    Article  CAS  Google Scholar 

  • Lohila A, Minkkinen K, Penttilä T, Launiainen S, Koskinen M, Ojanen P, Laurila T (2014) Contrasting impact of forestry-drainage on CO2 balance at two adjacent peatlands in Finland Geophysical Research Abstracts 16 (EGU2014-11392)

  • Luo Y, Weng E (2011) Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol Evol 26:96–104. doi:10.1016/j.tree.2010.11.003

    Article  PubMed  Google Scholar 

  • Maljanen M, Sigurdsson BD, Guðmundsson J, Óskarsson JH, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries - present knowledge and gaps. Biogeosciences 7:2711–2738. doi:10.5194/bg-7-2711-2010

    Article  CAS  Google Scholar 

  • Minkkinen K, Laine J (1998) Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can J For Res 28:1267–1275

    Article  Google Scholar 

  • Minkkinen K, Vasander H, Jauhiainen S, Karsisto M, Laine J (1999) Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire Central Finland. Plant Soil 207:107–120

    Article  Google Scholar 

  • Minkkinen K, Laine J, Shurpali NJ, Mäkiranta P, Alm J, Penttilä T (2007) Heterotrophic soil respiration in forestry-drained peatlands. Boreal Environ Res 12:115–126

    CAS  Google Scholar 

  • Moore PD (2002) The future of cool temperate bogs. Environ Conserv 29:3–20. doi:10.1017/S0376892902000024

    Article  CAS  Google Scholar 

  • Ojanen P, Minkkinen K, Penttilä T (2013) The current greenhouse gas impact of forestry-drained boreal peatland. For Ecol Manag 289:201–208. doi:10.1016/j.foreco.2012.10.008

    Article  Google Scholar 

  • Ojanen P, Lehtonen A, Heikkinen J, Penttilä T, Minkkinen K (2014) Soil CO2 balance and its uncertainty in forestry-drained peatlands in Finland. For Ecol Manag 325:60–73. doi:10.1016/j.foreco.2014.03.049

    Article  Google Scholar 

  • Palonen V, Oinonen M (2013) Molecular sieves in 14CO2 sampling and handling. Radiocarbon 55:416–420. doi:10.2458/azu_js_rc.55.16335

    Article  CAS  Google Scholar 

  • Paterson E, Midwood AJ, Millard P (2009) Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance. New Phytol 184:19–33. doi:10.1111/j.1469-8137.2009.03001.x

    Article  PubMed  CAS  Google Scholar 

  • Peltoniemi K, Fritze H, Laiho R (2009) Response of fungal and actinobacterial communities to water-level drawdown in boreal peatland sites. Soil Biol Biochem 41:1902–1914. doi:10.1016/j.soilbio.2009.06.018

    Article  CAS  Google Scholar 

  • Peltoniemi K, Straková P, Fritze H, Iráizoz PA, Pennanen T, Laiho R (2012) How water-level drawdown modifies litter-decomposing fungal and actinobacterial communities in boreal peatlands. Soil Biol Biochem 51:20–34. doi:10.1016/j.soilbio.2012.04.013

    Article  CAS  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179

    Article  PubMed  CAS  Google Scholar 

  • Pitkänen A, Turunen J, Tahvanainen T, Simola H (2013) Carbon storage change in a partially forestry-drained boreal mire determined through peat column inventories. Boreal Environ Res 18:223–234

    Google Scholar 

  • Pumpanen J, Heinonsalo J, Rasilo T, Hurme K, Ilvesniemi H (2009) Carbon balance and allocation of assimilated CO2 in Scots pine, Norway spruce, and Silver birch seedlings determined with gas exchange measurements and 14C pulse labelling in laboratory conditions. Trees - Struct Funct 23:611–621. doi:10.2136/sssaj2007.0199

    Article  CAS  Google Scholar 

  • Rydin H, Jeglum K (2006) The Biology of peatlands (ed. Rydin H, Jeglum K) Oxford University Press. ISBN-13: 978–0–19–852872–2

  • Scheffer RA, Aerts R (2000) Root decomposition and soil nutrient and carbon cycling in two temperate fen ecosystems. Oikos 91:541–549. doi:10.1034/j.1600-0706.2000.910316.x

    Article  Google Scholar 

  • Simola H, Pitkänen A, Turunen J (2012) Carbon loss in drained forestry peatlands in Finland, estimated by re-sampling peatlands surveyed in the 1980s. Eur J Soil Sci 63:798–807

    Article  CAS  Google Scholar 

  • Stén C-G (1998) The mires and usefulness of peat in Tammela, southern Finland (in Finnish, abstract in English). Report of peat investigation 314. Geological Survey of Finland

  • Straková P, Anttila J, Spetz P, Kitunen V, Tapanila T, Laiho R (2010) Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil 335:501–520. doi:10.1007/s11104-010-0447-6

    Article  CAS  Google Scholar 

  • Subke J-A, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF (2004) Feedback interactions between litter decomposition and rhizosphere activity. Oecologia 139:551–559. doi:10.1007/s004422-004-1540-4

    Article  PubMed  Google Scholar 

  • Subke J, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Chang Biol 12:921–943. doi:10.1111/j.1365-2486.2006.01117.x

    Article  Google Scholar 

  • Sullivan BW, Hart SC (2013) Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient. Soil Biol Biochem 58:293–301. doi:10.1016/j.soilbio.2012.12.007

    Article  CAS  Google Scholar 

  • Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411. doi:10.2307/2641102

    Article  Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Chang Biol 12:141–153. doi:10.1111/j.1365-2486.2006.01067.x

    Article  Google Scholar 

  • van Huissteden J, van den Bos R, Alvarez IM (2006) Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils. Neth J Geosci 851:3–18

    Google Scholar 

  • Zimmerman AR, Bao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179. doi:10.1016/j.soilbio.2011.02.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Maj and Tor Nessling foundation and by the European Commission through the project GHG Europe (244122). J. Pumpanen, A. Lindén and J. Heinonsalo were supported by the Academy of Finland research 130984, 218094, 255576 and 263858 as well as by the Academy of Finland Centre of Excellence Program. The study was further financially supported by the Academy of Finland research 132045 (granted to C. Biasi). We also thank Aki Tsuruta (Finnish Meteorological Institute) for valuable statistical assistance.

Compliance with ethical standards

We ensure the quality and integrity of this research. We have followed the good scientific practice as formulated in international standards for authors, developed at the 2nd World Conference on Research Integrity in Singapore in July 2010. The implementation did not require statement by an ethics committee, by the Committee on Animal Experimentation or any corresponding statement or permit. Furthermore, the research is independent and impartial and no results were published before.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Linkosalmi.

Additional information

Responsible Editor: Peter Christie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linkosalmi, M., Pumpanen, J., Biasi, C. et al. Studying the impact of living roots on the decomposition of soil organic matter in two different forestry-drained peatlands. Plant Soil 396, 59–72 (2015). https://doi.org/10.1007/s11104-015-2584-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2584-4

Keywords

Navigation