Skip to main content
Log in

Consequences of banding nitrogen fertilizers in soil

I. Effects on nitrification

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

An account is given of the interactions which occur when urea or ammonium sulphate is banded in a clay soil. The spatial distributions of ammonium, nitrate, and nitrite around the band are given as functions of time and are discussed in relation to results from a series of incubations of homogeneous mixtures of various nitrogen compounds and soil. The diffusion of the banded fertilizers and their products through the soil presents the nitrifying organisms with a wide range of environments. The patterns of nitrification are therefore complicated. Nevertheless, they are explicable in terms of the main results of the incubations which were that (a) nitrification was completely inhibited if the osmotic suction of the soil solution was higher than 10 bars, if the ammonium-N concentration in the soil solution was above 3000 ppm, or if the pH was greater than 8, (b) nitrite accumulated if the pH was between 7 and 8, (c) nitrate accumulated if the pH was less than 7, and (d) above a minimum concentration of fertilizer the rate of nitrate formation was independent of the concentration unless the latter was so high that either pH, osmotic suction or ammonium concentration became inhibitory.

An agronomic implication of the work is that if a given amount of fertilizer is applied to a given area of soil, the rate of nitrate formation per unit area may be controlled by banding the fertilizer and varying the band spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alum, M. I. H. and Alexander, M., Nutrition and physiology ofNitrobacter agilis. Applied Microbiol.8, 80–84 (1960).

    Google Scholar 

  2. Bremner, J. M. and Edwards, A. P., Determination and isotope ratio analysis of different forms of nitrogen in soils: I. Apparatus and procedure for distillation and and determination of ammonium. Soil Sci. Soc. Am. Proc.29, 504–507 (1965).

    CAS  Google Scholar 

  3. Broadbent, F. E., Tyler, K. B., and Hill, G. N., Nitrification of ammoniacal fertilizers in some California soils. Hilgardia27, 247–267 (1957).

    CAS  Google Scholar 

  4. Chapman, H. D. and Liebig, G. F., Field and laboratory studies of nitrite accumulation in soils. Soil Sci. Soc. Am. Proc.16, 276–282 (1952).

    CAS  Google Scholar 

  5. Duisberg, P. C. and Buehrer, T. F., Effect of ammonia and its oxidation products on rate of nitrification and plant growth. Soil Sci.78, 37–49 (1954).

    CAS  Google Scholar 

  6. Duncan, W. G. and Ohlrogge, A. J., Principles of nutrient uptake from fertilizer bands II. Root development in the band. Agron J.50, 605–608 (1958).

    CAS  Google Scholar 

  7. Freney, J. R. and Wetselaar, R., The determination of mineral nitrogen in soil with particular reference to nitrate. CSIRO, Australia, Div. of Plant Industry, Tech. Pap. No.23 (1967).

  8. Harada, T. and Kai, H., Studies on the environmental conditions controlling nitrification in soil I. Effects of ammonium and total salts in media on the rate of nitrification. Soil Sci. Plant Nutrit.14, 20–26 (1968).

    CAS  Google Scholar 

  9. Hauck, R. D. and Stephenson, H. F., Nitrification of nitrogen fertilizers. Effect of nitrogen source, size and pH of the granule, and concentration. J. Agr. Food Chem.13, 486–492 (1965).

    Article  CAS  Google Scholar 

  10. Ishizuka, Y., Hayashi, M., and Harada, I., [Effects of relative position of fertilizers on the development of dry field crops. Relation between patterns of root development and concentration of various fertilizers.] J. Sci. Soil Tokyo35, 159–164 (1964).

    CAS  Google Scholar 

  11. Ishizuka, Y., Hayashi, M., and Hishizaki, N., [Effect of relative position of fertilizers on the development of dry field crops. Summary of the studies on the relation between concentrations and fertilizing methods of various fertilizers and root development.] J. Sci. Soil Tokyo38, 374–378 (1967).

    Google Scholar 

  12. Ishizuka, Y., Hayashi, M., Ogata, A., and Harada, I., [Studies on the fertilizer position in the crop field. The effect of diffusion of nitrogenous fertilizers in soil on the growth of crop roots.] J. Sci. Soil Tokyo36, 289–296 (1965).

    CAS  Google Scholar 

  13. Ishizuka, Y., Tanaka, A., and Hayashi, M., [Effect of relative position of fertilizers on the development of dry field crops. Relation between position and concentration of fertilizers and mode of root development.] J. Sci. Soil Tokyo34, 43–48 (1963).

    Google Scholar 

  14. Johnson, D. D. and Guenzi, W. D., Influence of salts on ammonium oxidation and carbon dioxide evolution from soil. Soil Sci. Soc. Am. Proc.27, 663–666 (1963).

    CAS  Google Scholar 

  15. Kelly, W. F., Nitrification in semi-arid soils. J. Agr. Research7, 417–437 (1916).

    Google Scholar 

  16. Martin, W. P., Buehrer, T. F., and Carter, A. B., Threshold pH value for the nitrification of ammonia in desert soils. Soil Sci. Soc. Am. Proc.7, 223–228 (1942).

    Google Scholar 

  17. Morrill, L. G. and Dawson, J. E., Growth rates of nitrifying chemoautotrophs in soils. J. Bacteriol.83, 205–206 (1962).

    CAS  PubMed  Google Scholar 

  18. Morrill, L. G. and Dawson, J. E., Patterns observed for the oxidation of ammonium to nitrate by soil organisms. Soil Sci. Soc. Am. Proc.31, 757–760 (1967).

    CAS  Google Scholar 

  19. Peech, M., Hydrogen-ion activity. Methods of soil analysis. Agron. No. 9, Part 2, 914–926 (1965), Ed. C. A. Blacket al.

  20. Porter, L. K., Enzymes. Methods of soil analysis. Agron. No. 9, Part 2, 1536–1549 (1965), Edit. C. A. Blacket al.

  21. Wetselaar, R., Nitrate distribution in tropical soils. II. Extent of capilary movement during a long dry period. Plant and Soil15, 121–133 (1961).

    CAS  Google Scholar 

  22. Wiersum, L. K., Density of root branching as affected by substrate and separate ions. Acta Botan. Neerlandica7, 174–190 (1958).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetselaar, R., Passioura, J.B. & Singh, B.R. Consequences of banding nitrogen fertilizers in soil. Plant Soil 36, 159–175 (1972). https://doi.org/10.1007/BF01373466

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01373466

Keywords

Navigation