Skip to main content
Log in

Two-dimensional hexagonal layers of A N B 8–N compounds on semiconductors

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using the parabolic model of the electronic spectrum of the substrate and the low-energy approximation of the dispersion law for two-dimensional hexagonal compounds A N B 8‒N , the density of states of an epitaxial layer has been investigated as a function of the band gap of the substrate, the band gap of the graphene-like compound in a free-standing state, their mutual arrangement, and the dimensionless “layer–substrate” coupling constant C. It has been shown that, when the coupling constant C exceeds critical values, the density of states of the epitaxial layer undergoes qualitative changes. Both flat and buckled epitaxial layers have been considered. Estimates of the charge redistribution due to the transformation of the density of states of the graphene-like compound have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Phys. Rev. B: Condens. Matter 80 15, 155453 (2009).

    Article  ADS  Google Scholar 

  2. T. Suzuki and Y. Yokomizo, Physica E (Amsterdam) 40, 2820 (2010).

    Article  ADS  Google Scholar 

  3. S. Wang, J. Phys. Soc. Jpn. 79, 064602 (2010).

    Article  ADS  Google Scholar 

  4. H. L. Zhuang and R. G. Hennig, Appl. Phys. Lett. 101, 153109 (2012).

    Article  ADS  Google Scholar 

  5. G. Mukhopadhyay and H. Behera, World J. Eng. 10, 39 (2013).

    Article  Google Scholar 

  6. H. L. Zhuang, A. K. Singh, and R. G. Hennig, Phys. Rev. B: Condens. Matter 87 16, 165415 (2013).

    Article  ADS  Google Scholar 

  7. A. K. Singh, H. L. Zhuang, and R. G. Hennig, Phys. Rev. B: Condens. Matter 89 24, 245431 (2014).

    Article  ADS  Google Scholar 

  8. C.-J. Tong, H. Zhang, Y.-N. Zhang, H. Liu, and L.-M. Liu, J. Mater. Chem. A 2, 17971 (2014).

    Article  Google Scholar 

  9. R. M. Feenstra, D. Jena, and G. Gu, J. Appl. Phys. 111, 043711 (2012).

    Article  ADS  Google Scholar 

  10. J. Beheshtian, D. A. Sadeghi, M. Neek-Amal, K. H. Michel, and F. M. Peeters, Phys. Rev. B: Condens. Matter 86 19, 195433 (2012).

    Article  ADS  Google Scholar 

  11. M. Neek-Amal and F. M. Peeters, Appl. Phys. Lett. 104, 041909 (2014).

    Article  ADS  Google Scholar 

  12. V. Zoliomi, J. R. Wallbank, and V. I. Fal’ko, 2D Materials 1, 011005 (2014).

    Article  Google Scholar 

  13. A. Hashmi and J. Hong, J. Appl. Phys. 115, 194304 (2014).

    Article  ADS  Google Scholar 

  14. J. E. Padilha, A. Fazzio, and A. J. R. da Silva, Phys. Rev. Lett. 114, 066803 (2015).

    Article  ADS  Google Scholar 

  15. G. Gumbs, A. Iurov, D. Huang, and W. Pan, J. Appl. Phys. 118, 054303 (2015).

    Article  ADS  Google Scholar 

  16. S. Yu. Davydov, Phys. Solid State 58 (4) (2016) (in press).

  17. S. Yu. Davydov, A. A. Lebedev, and O. V. Posrednik, Elementary Introduction to the Theory of Nanosystems (Lan’, St. Petersburg, 2014) [in Russian].

    Google Scholar 

  18. S. Yu. Davydov, The Theory of Adsorption: Method of Model Hamiltonians (St. Petersburg State Electrotechnical University “LETI,” St. Petersburg, 2013) [in Russian]. twirpxcom/file/1596114/.

    Google Scholar 

  19. A. H. Castro Neto, F. Guinea, N. M. R. Peres, R. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  20. S. Yu. Davydov, Tech. Phys. 59 4, 624 (2014).

    Article  Google Scholar 

  21. S. Yu. Davydov, Semiconductors 48 1, 46 (2014).

    Article  ADS  Google Scholar 

  22. W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Freeman, San Francisco, California, United States, 1980; Mir, Moscow, 1983), Vol. 1.

    Google Scholar 

  23. W. A. Harrison, Phys. Rev. B: Condens. Matter 31, 2121 (1985).

    Article  ADS  Google Scholar 

  24. S. Yu. Davydov and O. V. Posrednik, Bond-Orbital Method in the Theory of Semiconductors (St. Petersburg State Electrotechnical University “LETI,” St. Petersburg, 2007) [in Russian]. twirpxcom/file/1014608/.

    Google Scholar 

  25. F. Bechstedt and R. Enderlein, Semiconductor Surfaces and Interfaces: Their Atomic and Electronic Structures (Akademie, Berlin, 1988; Mir, Moscow, 1990).

    Google Scholar 

  26. A. K. Geim and I. V. Grigorieva, Nature (London) 499, 420 (2013).

    Article  Google Scholar 

  27. I. V. Antonova, Semiconductors 50 1, 66 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Additional information

Original Russian Text © S.Yu. Davydov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 6, pp. 1182–1192.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. Two-dimensional hexagonal layers of A N B 8–N compounds on semiconductors. Phys. Solid State 58, 1222–1233 (2016). https://doi.org/10.1134/S1063783416060093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416060093

Navigation