Skip to main content
Log in

Ostwald ripening under conditions of mixed-type diffusion

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The Ostwald ripening in metallic alloys and quasi-zero-dimensional semiconductor structures is investigated under conditions of mixed dislocation-matrix diffusion, when none of the terms j d and j v in the expression for the total diffusion flux can be ignored. The size distribution functions and time dependences of the maximum size r g and critical (average) size r k(〈r〉) of particles for different ratios x between the fluxes are obtained. It is demonstrated that mixed dislocation-matrix diffusion can occur in the course of the formation of CdS quantum dots prepared through chemical deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk 168(10), 1083 (1998) [Phys. Usp. 41 (10), 983 (1988)].

    Article  Google Scholar 

  2. I. M. Lifshitz and V. V. Slyozov, Zh. Éksp. Teor. Fiz. 35, 479 (1958) [Sov. Phys. JETP 8, 331 (1958)].

    Google Scholar 

  3. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  ADS  Google Scholar 

  4. C. Wagner, Z. Elektrochem. 65, 581 (1961).

    Google Scholar 

  5. V. V. Slyozov, Fiz. Tverd. Tela (Leningrad) 9(4), 1187 (1967) [Sov. Phys. Solid State 9 (4), 927 (1967)].

    Google Scholar 

  6. H. O. K. Kirchner, Metall. Trans. 2, 2861 (1971).

    Google Scholar 

  7. B. K. Chakraverty, J. Phys. Chem. Solids 28, 2401 (1967).

    Article  ADS  Google Scholar 

  8. R. D. Vengrenovich, Ukr. Fiz. Zh. 22, 219 (1977).

    ADS  Google Scholar 

  9. H. Kreye, Z. Metallkd. 61, 108 (1970).

    Google Scholar 

  10. A. J. Ardell, Acta Metall. 20, 602 (1972).

    Google Scholar 

  11. R. D. Vengrenovich, Fiz. Met. Metalloved. 39, 435 (1975).

    Google Scholar 

  12. R. D. Vengrenovitch, Acta Metall. 30, 1079 (1982).

    Article  Google Scholar 

  13. R. D. Vengrenovich, Yu. V. Gudyma, and S. V. Yarema, Fiz. Met. Metalloved. 91(3), 16 (2001) [Phys. Met. Metallogr. 91 (3), 228 (2001)].

    Google Scholar 

  14. R. D. Vengrenovich, Yu. V. Gudyma, and S. V. Yarema, Scr. Mater. 46, 363 (2002).

    Article  Google Scholar 

  15. M. C. Bartelt and J. W. Evans, Phys. Rev. B: Condens. Matter 46, 12675 (1992).

    ADS  Google Scholar 

  16. N. C. Bartelt, W. Theis, and R. M. Tromp, Phys. Rev. B: Condens. Matter 54, 11741 (1996).

    ADS  Google Scholar 

  17. I. Goldfarb, P. T. Hayden, J. H. G. Owen, and G. A. D. Briggs, Phys. Rev. Lett. 78, 3959 (1997); Phys. Rev. B: Condens. Matter. 56, 10459 (1997).

    Article  ADS  Google Scholar 

  18. B. A. Joyce, D. D. Vvedensky, A. R. Avery, J. G. Belk, H. T. Dobbs, and T. S. Jones, Appl. Surf. Sci. 130–132, 357 (1998).

    Article  Google Scholar 

  19. T. I. Kamins, G. Medeiros-Ribeiro, D. A. A. Ohlberg, and R. Stanley Williams, J. Appl. Phys. 85, 1159 (1999).

    Article  ADS  Google Scholar 

  20. R. D. Vengrenovich, Yu. V. Gudyma, and S. V. Yarema, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35(12), 1440 (2001) [Semiconductors 35 (12), 1378 (2001)].

    Google Scholar 

  21. R. D. Vengrenovich, Yu. V. Gudyma, and S. V. Yarema, Phys. Status Solidi B 242, 881 (2005).

    Article  ADS  Google Scholar 

  22. R. D. Vengrenovich and Yu. V. Gudyma, Fiz. Tverd. Tela (St. Petersburg) 43(7), 1171 (2001) [Phys. Solid State 43 (7), 1214 (2001)].

    Google Scholar 

  23. R. D. Vengrenovich, Yu. V. Gudyma, and D. D. Nikirsa, J. Phys.: Condens. Matter. 13, 2947 (2001).

    Article  ADS  Google Scholar 

  24. V. V. Kondrat’ev and Yu. M. Ustyugov, Fiz. Met. Metalloved. 64, 858 (1987).

    Google Scholar 

  25. S. V. Gaponenko, Fiz. Tekh. Poluprovodn. (St. Petersburg) 30, 577 (1996) [Semiconductors 30, 315 (1996)].

    Google Scholar 

  26. L. Katsikas, A. Eychmuller, M. Giersig, and H. Weller, Chem. Phys. Lett. 172, 201 (1990).

    Article  ADS  Google Scholar 

  27. V. V. Slezov, V. V. Sagalovich, and L. V. Tanatarov, J. Phys. Chem. Solids 39, 705 (1978).

    Article  ADS  Google Scholar 

  28. V. V. Slezov and V. V. Sagalovich, Usp. Fiz. Nauk 151(1), 67 (1987) [Sov. Phys. Usp. 30 (1), 23 (1987)].

    Google Scholar 

  29. A. S. Aronin, A. G. Abrosimova, and Yu. V. Kir’yanov, Fiz. Tverd. Tela (St. Petersburg) 43(11), 1925 (2001) [Phys. Solid State 43 (11), 2003 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © R.D. Vengrenovich, A.V. Moskalyuk, S.V. Yarema, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 1, pp. 13–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vengrenovich, R.D., Moskalyuk, A.V. & Yarema, S.V. Ostwald ripening under conditions of mixed-type diffusion. Phys. Solid State 49, 11–17 (2007). https://doi.org/10.1134/S1063783407010039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783407010039

PACS numbers

Navigation