Skip to main content
Log in

On Estimating the G-peak shift in graphene Raman spectra

  • Graphene
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The frequency shift of the Raman G peak of epitaxial graphene due to the interaction with a substrate described by effective bond force constant k is investigated using the model of two coupled oscillators. The relative G-peak shift is shown to be Δω(G)/ω(G) ∝ k/k0g, where k0g is the bond-stretching force constant of single-layer graphene. Assuming k ∝ P and k ∝–T, where P and T are the pressure and temperature, and the k variation to be dominant, we qualitatively explain the experimental dependences of Δω(G) on P and T. The effect of the substrate on the G-peak broadening in epitaxial graphene is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Yoon and H. Cheong, in Raman Spectroscopy for Nanomaterials Characterization, Ed. by Challa S. S. R. Kumar (Springer-Verlag, Berlin, 2012), p.191.

  2. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009).

    Article  ADS  Google Scholar 

  3. A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013).

    Article  ADS  Google Scholar 

  4. Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, and Z. X. Shen, Phys. Rev. B: Condens. Matter 77, 115416 (2008).

    Article  ADS  Google Scholar 

  5. N. Ferralis, R. Maboudian, and C. Carraro, Phys. Rev. Lett. 101, 156801 (2008).

    Article  ADS  Google Scholar 

  6. J. Robinson, C. Puls, N. Staley, J. Stitt, M. Fanton, K. Emtsev, T. Seyller, and Y. Liu, Nano Lett. 9, 964 (2009).

    Article  ADS  Google Scholar 

  7. E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, Solid State Commun. 8, 133 (1970).

    Article  ADS  Google Scholar 

  8. H. Sakata, G. Dresselhaus, M. S. Dresselhaus, and M. Enda, J. Appl. Phys. 63, 2769 (1988).

    Article  ADS  Google Scholar 

  9. J. W. Ager III, S. Anders, A. Anders, and I. G. Brown, Appl. Phys. Lett. 66, 3444 (1995).

    Article  ADS  Google Scholar 

  10. J. Röhrl, M. Hundhausen, K. V. Emtsev, T. Seyller, R. Graupner, and L. Ley, Appl. Phys. Lett. 92, 201918 (2008).

    Article  ADS  Google Scholar 

  11. N. Ferralis, R. Maboudian, and C. Carraro, Phys. Rev. B: Condens. Matter 83, 081410 (2011).

    Article  ADS  Google Scholar 

  12. F. Fromm, M. H. Oliveira Jr., A. Molina-Sanchez, M. Hundhausen, J. M. Lopes, H. Riechert, L. Wirtz, and T. Seyller, New J. Phys. 15, 043031 (2013).

    Article  ADS  Google Scholar 

  13. N. S. Luo, P. Ruggerone, and J. P. Tonnies, Phys. Rev. B: Condens. Matter 54, 5051 (1996).

    Article  ADS  Google Scholar 

  14. C. Oshima and A. Nagashima, J. Phys.: Condens. Matter 9, 1 (1997).

    ADS  Google Scholar 

  15. A. Politano, Crit. Rev. Solid State Mater. Sci. 42 (2), 99 (2017). doi 10.1080/10408436.2016.1138852.

    Article  Google Scholar 

  16. S. Yu. Davydov, Phys. Solid State 52 (1), 184 (2010).

    Article  ADS  Google Scholar 

  17. W. Harrison, Electronic Structure and Properties of Solids (Freeman, San Francisco, California, 1980; Mir, Moscow, 1983), Vol.1.

    Google Scholar 

  18. S. Yu. Davydov and O. V. Posrednik, Bonding Orbital Method in the Theory of Semiconductors (St. Petersburg Electrotechnical University “LETI,” St. Petersburg, 2007) [in Russian]. twirpx.com/file/1014608/.

    Google Scholar 

  19. J. Borysiuk, J. Soltys, R. Bozek, J. Piechota, S. Krukowski, W. Strupinski, J. M. Baranowski, and R. Stepniewski, Phys. Rev. B: Condens. Matter 85, 045426 (2012).

    Article  ADS  Google Scholar 

  20. A. A. Blistanov, V. S. Bondarenko, N. V. Perelomova, F. N. Strizhevskaya, V. V. Chkalova, and M. P. Shaskol’skaya, Acoustic Crystals: A Handbook, (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  21. V. M. Grabov, S. Yu. Davydov, Yu. P. Mironov, and A. M. Dzhumigo, Sov. Phys. Solid State 27 (7), 1210 (1985).

    Google Scholar 

  22. J. E. Proctor, E. Gregoryanz, K. S. Novoselov, M. Lotya, J. N. Coleman, and M. P. Halsall, Phys. Rev. B: Condens. Matter 80, 073408 (2009).

    Article  ADS  Google Scholar 

  23. S. Lu, M. Yao, X. Yang, Q. Li, J. Xiao, Z. Yao, L. Jiang, R. Liu, Bo Liu, S. Chen, B. Zou, T. Cui, and B. Liu. Chem. Phys. Lett. 585, 101 (2013).

    Article  ADS  Google Scholar 

  24. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Inelasticity of Crystals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  25. S. Yu. Davydov, Phys. Solid State 52 (4), 810 (2010).

    Article  Google Scholar 

  26. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  27. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7, 238 (2007).

    Article  ADS  Google Scholar 

  28. A. Cocemasov and D. Nika, in Proceedings of the 14th ISPC “Modern Information and Electronic Technologies,” Odessa, Ukraine, May 27–31, 2013, p. 130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Additional information

Original Russian Text © S.Yu. Davydov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 3, pp. 610–613.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. On Estimating the G-peak shift in graphene Raman spectra. Phys. Solid State 59, 629–632 (2017). https://doi.org/10.1134/S1063783417030088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417030088

Navigation