Skip to main content
Log in

Geo-neutrinos and Borexino

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Geo-neutrinos, electron anti-neutrinos produced in β-decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet’s interior. After a brief introduction about the Earth, the geo-neutrinos’ properties and the main aims of their study are discussed. An overview of the latest experimental results obtained by the Borexino collaboration is provided, followed by a short overview of future perspectives of this new inter-disciplinary field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Šrámek, W.F. McDonough, E. S. Kite, V. Lekic, S. T. Dye, and S. J. Zhong, “Geophysical and geochemical constraints on geoneutrino fluxes from Earth’s mantle,” Earth and Planetary Sci. Lett. 361, 356 (2013).

    Article  ADS  Google Scholar 

  2. R. L. Rudnick and S. Gao, “The crust,” in Treatise on Geochemistry, Vol. 3 (Elsevier, Oxford, 2003), pp. 1–64.

    Chapter  Google Scholar 

  3. Y. Huang, V. Chubakov, F. Mantovani, R. L. Rudnick, and W. F. McDonough, “A reference Earth model for the heat-producing elements and associated geoneutrino flux,” Geochem. Geophys. Geosys. 14, 2003 (2013).

    Article  ADS  Google Scholar 

  4. W.F. McDonough and S.-S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223 (1995).

    Article  Google Scholar 

  5. C. J. Allégre, J. Poirier, E. Humler, and A. W. Hofmann, “The chemical composition of the Earth,” Earth and Planetary Sci. Lett. 134, 515 (1995).

    Article  ADS  Google Scholar 

  6. S. R. Hart and A. Zindler, “In search of a bulk Earth composition,” Chem. Geol. 57, 247 (1986).

    Article  ADS  Google Scholar 

  7. R. Arevalo, W.F. McDonough, and M. Luong, “The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution,” Earth and Planetary Sci. Lett. 278, 361 (2009).

    Article  ADS  Google Scholar 

  8. H. Palme and H. S. C. O’Neill, “The mantle and core,” in Treatise of Geochemistry, Vol. 2 (Elsevier, Oxford, 2003), pp. 1–38.

    Google Scholar 

  9. M. Javoy, E. Kaminski, F. Guyot, D. Andrault, C. Sanloup, M. Moreira, S. Labrosse, A. Jambon, P. Agrinier, A. Davaille, and C. Jaupart, “The chemical composition of the Earth: enstatite chondrite models,” Earth and Planetary Sci. Lett. 293, 59 (2010).

    Article  Google Scholar 

  10. H. S. C. O’Neill and H. Palme, “Collisional erosion and the non-chondritic composition of the terrestrial planets,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, 4205–4238 (2008).

    Article  ADS  Google Scholar 

  11. J. H. Davies and D. R. Davies, “Earth’s surface heat flux, Solid Earth 1, 5 (2010).

    Article  ADS  Google Scholar 

  12. C. Jaupart, S. Labrosse, and J. C. Mareschal, Treatise of Geophysics (Elsevier, Amsterdam, 2007), pp. 1–53.

    Google Scholar 

  13. A. Strumia and F. Vissani, “Precise quasielastic neutrino/nucleon cross-section,” Phys. Lett. B 564, 42 (2003).

    Article  ADS  Google Scholar 

  14. S. Enomoto, “Using neutrinos to study the Earth: geoneutrinos,” in Talk at the NeuTel 2009 Conference, Venice, Italy, 2009.

  15. G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A. M. Rotunno, “Global analysis of neutrino masses, mixings, and phases: entering the era of leptonic CP violation searches,” Phys. Rev. D 86(1), 013012 (2012).

    Article  ADS  Google Scholar 

  16. S. Enomoto, Neutrino Geophysics and Observation of Geo-neutrinos at KamLAND. Ph. D. Thesis (Tohoku University, Japan, 2005).

    Google Scholar 

  17. T. Araki et al. (KamLAND Collaboration), “Experimental investigation of geologically produced antineutrinos with KamLAND,” Nature 436, 499 (2005).

    Article  ADS  Google Scholar 

  18. S. Abe et al. (KamLAND Collaboration), “Precision measurement of neutrino oscillation parameters with KamLAND,” Phys. Rev. Lett. 100, 221803 (2008).

    Article  ADS  Google Scholar 

  19. G. Bellini et al. (Borexino Collaboration), “Observation of geo-neutrinos,” Phys. Lett. B 687, 299 (2010).

    Article  ADS  Google Scholar 

  20. A. Gando et al. (KamLAND Collaboration), “Partial radiogenic heat model for Earth revealed by geoneutrino measurements,” Nature Geoscience 1205 (2011), DOI:10.1038.

  21. A. Gando et al. (KamLAND Collaboration), “Reactor on-off antineutrino measurement with KamLAND,” Phys. Rev. D 88, 033001 (2013).

    Article  ADS  Google Scholar 

  22. G. Bellini et al. (Borexino Collaboration), “Measurement of geo-neutrinos from 1353 days of Borexino,” Phys. Lett. B 722, 295 (2013).

    Article  ADS  Google Scholar 

  23. H. Back et al. (Borexino Collaboration), “Borexino calibrations: hardware, methods, and results,” JINST 7, P10018 (2012).

    Article  Google Scholar 

  24. G. Alimonti et al. (Borexino Collaboration), “The Borexino detector at the Laboratori Nazionali del Gran Sasso,” Nucl. Instrum. Meth. Phys. Res. A 600, 568 (2009).

    Article  ADS  Google Scholar 

  25. G. Bellini et al. (Borexino Collaboration), “Muon and cosmogenic neutron detection in Borexino,” JINST 6, P5005 (2011).

    Article  ADS  Google Scholar 

  26. M. Coltorti, R. Boraso, F. Mantovani, M. Morsilli, G. Fiorentini, A. Riva, G. Rusciadelli, R. Tassinari, C. Tomei, G. Di Carlo, and V. Chubakov, “U and Th content in the Central Apennines continental crust: a contribution to the determination of the geo-neutrinos flux at LNGS,” Geochim. Cosmochimica Acta 75, 2271 (2011).

    Article  ADS  Google Scholar 

  27. G. Fiorentini, G. L. Fogli, E. Lisi, F. Mantovani, and A. M. Rotunno, “Mantle geoneutrinos in KamLAND and Borexino,” Phys. Rev. D 86, 033004 (2012).

    Article  ADS  Google Scholar 

  28. J. M. Herndon and D. A. Edgerley, “Background for terrestrial antineutrino investigations: radionuclide distribution, georeactor fission events, and boundary conditions on fission power production,” arXiv:hepph/0501216.

  29. J. M. Herndon, “Substructure of the inner core of the Earth,” Proc. Natl. Acad. Sci. USA 93(2), 646 (1996).

    Article  ADS  Google Scholar 

  30. M. Chen, “Geo-neutrinos in SNO,” Earth, Moon and Planets 99, 221 (2006).

    Article  ADS  Google Scholar 

  31. Z. Wang, “Update of DayaBay II Jiangmen anti-neutrino observation spectrometer,” in Talk given at the Neutrino Geoscience 2013 Conference, Takayama, Japan, 2013.

  32. M. Wurm, J. F. Beacom, L. B. Bezrukov, et al., “The next-generation liquid-scintillator neutrino observatory LENA,” Astrop. Phys. 35, 685 (2012).

    Article  ADS  Google Scholar 

  33. J. G. Learned, S. T. Dye, and S. Pakvasa, “Hanohano: a deep ocean anti-neutrino detector for unique neutrino physics and geophysics studies,” arXiv:0810.4975.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ludhova.

Additional information

Talk at the International Workshop on Prospects of Particle Physics, “Neutrino Physics and Astrophysics”, Valday, Russia, January 26–February 02, 2014.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludhova, L., Bellini, G., Benziger, J. et al. Geo-neutrinos and Borexino. Phys. Part. Nuclei 46, 174–181 (2015). https://doi.org/10.1134/S1063779615020148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615020148

Keywords

Navigation