Skip to main content

Advertisement

Log in

Tempestitic shell beds formed by a new serpulid polychaete from the Bajocian (Middle Jurassic) of the Central High Atlas (Morocco)

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

Serpulid-dominated shell beds from the Lower Bajocian (Middle Jurassic) of the Central High Atlas (Morocco) are primarily formed by quadrangular tubes of the serpulid polychaete Nogrobs moroccensis sp. nov. The transverse tube ornament consisting predominately of wrinkles, the lack of narrow spirals and the shortness or absence of attached posterior tube portion represent the diagnostic features of this new species. Tubes of Nogrobs moroccensis co-occur with gastropods and oyster–crinoidal debris. We suggest that these serpulids were free-lying in their adult stage and formed benthic meadows on soft-bottom habitats. They frequently show parallel alignment in plane views in both graded and non-graded, few-cm-thick shell beds, corresponding to distal tempestites deposited close to and below storm wave base in an outer-ramp environment. The excellent preservation of serpulids implies short residence time on the seafloor, and the lack of compositional mixing with other communities and their restriction to outer-ramp habitats indicate that they represent parautochthonous assemblages. Analyses of serpulid orientation on the bottom bedding planes of shell beds revealed weak unidirectional arrangement of tubes, whereas orientation on the top bedding planes revealed strong unidirectional arrangement of tubes, with significantly different orientation relative to the bottom planes. This change could suggest a shift from predominantly a current component of the combined storm flow (with uneven seafloor surface and adhesion of skeletal grains to muddy substrate) to significant oscillatory component of the waning storm, as also suggested by bidirectional orientation of gastropods.

Kurzfassung

Serpulidenreiche Schilllagen im Unter-Bajocium (Mittel-Jura) des zentralen Hohen Atlas (Marokko) bestehen überwiegend aus den rechteckigen Röhren der Serpulidenart Nogrobs moroccensis sp. nov. Charakteristische Merkmale dieser neuen Species sind das hauptsächlich aus Runzeln bestehende Querornament, das Fehlen enger Spiralen und der nur kurze oder fehlende aufgewachsene hintere Röhrenabschnitt. Die Röhren von Nogrobs moroccensis kommen gemeinsam mit Gastropoden, Austernfragmenten und Skelettelementen von Crinoiden vor. Wir stellen uns vor, daß diese Serpuliden im adulten Stadium lose auf dem weichen Meeresboden lagen und hier benthische submarine Wiesen bildeten. Die Serpulidenröhren erfüllen sowohl gradierte als auch nicht gradierte, einige Zentimeter dicke Schilllagen; diese interpretieren wir als distale Tempestite, die nahe an und unterhalb der Sturmwellenbasis in einem Habitat auf der äußeren Rampe abgelagert wurden. Auf den Schichtflächen sind die Serpulidenröhren häufig parallel eingeregelt. Die ausgezeichnete Erhaltung der Serpulidenröhren deutet darauf hin, daß sie lediglich für kurze Zeit frei auf der Oberfläche des Meeresbodens herumlagen. Das Fehlen einer Vermischung mit anderen Gemeinschaften und ihre Beschränkung auf die äußeren Rampe zeigt an, dass sie parautochthone Vergesellschaftungen darstellen. Die Analyse der Orientierung der Serpulidenröhren auf den unteren Schichtflächen der Schilllagen ergab eine schwach ausgeprägte Anordnung in einer Richtung, wohingegen die Orientierung auf den oberen Schichtflächen eine stark ausgeprägte Anordnung in einer Richtung zeigt, die signifikant von der Richtung auf den unteren Schichtflächen abweicht. Dieser Richtungswechsel zeugt möglicherweise von einem Wechsel von der vorherrschenden Wirkung abfließenden Wassers (mit einer unregelmäßigen Oberfläche des Meeresbodens und Klebenbleiben von Bioklasten auf dem schlammigen Substrat) hin zu einer signifikant oszillierenden, vom abflauenden Sturm induzierten Wasserbewegung, auf die auch die Orientierung von Gastropodengehäusen in zwei entgegengesetzten Richtungen hinweist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agostinelli, C., and U. Lund. 2013. R package ‘circular’: Circular Statistics (version 0.4-7).

  • Aigner, T. 1982. Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk limestones (Middle Trias, SW-Germany). In Cyclic and Event Stratification, eds. G. Einsele, and A. Seilacher, 180–198. Berlin: Springer.

    Chapter  Google Scholar 

  • Ait Addi, A. 2006. The dogger reef horizons of the Moroccan central High Atlas: New data on their development. Journal of African Earth Sciences 45 (2): 162–172.

    Article  Google Scholar 

  • Ait Addi, A. 2015. Builders and taphonomic processes of Bajocian coral patch reefs in the Moroccan Central High Atlas. Arabian Journal of Geosciences 8 (10): 8583–8600.

    Article  Google Scholar 

  • Ait Addi, A., and D. Chafiki. 2013. Sedimentary evolution and palaeogeography of mid-Jurassic deposits of the Central High Atlas, Morocco. Journal of African Earth Sciences 84: 54–69.

    Article  Google Scholar 

  • Batschelet, E. 1981. Circular Statistics in Biology. London: Academic Press.

    Google Scholar 

  • Brenchley, P.J., and G. Newall. 1970. Flume experiments on the orientation and transport of models and shell valves. Palaeogeography, Palaeoclimatology, Palaeoecology 7: 185–220.

    Article  Google Scholar 

  • Butts, S.H. 2014. Silicification. In Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization, eds. Laflamme, M., Schiffbauer, J.D., Darroch, S.A.F., 15–33. (The Paleontological Society Papers 20).

  • Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8 (6): 679–698.

    Article  Google Scholar 

  • Christ, N., A. Immenhauser, F. Amour, M. Mutti, S. Tomas, S.M. Agar, R. Alway, and L. Kabiri. 2012. Characterization and interpretation of discontinuity surfaces in a Jurassic ramp setting (High Atlas, Morocco). Sedimentology 59: 249–290.

    Article  Google Scholar 

  • Davies, D.J., E.N. Powell, and R.J. Stanton. 1989. Taphonomic signature as a function of environmental processes: Shells and shell beds in a hurricane-influenced inlet on the Texas coast. Palaeogeography, Palaeoclimatology, Palaeoecology 72: 317–356.

    Article  Google Scholar 

  • Durlet, C., Y. Almeras, E.H. Chellai, S. Elmi, L. Le Callonnec, C. Lezin, and P. Neige. 2001. Anatomy of a Jurassic carbonate ramp: a continuous outcrop transect across southern margin of the High Atlas (Morocco). Géologie Méditerranéenne 28 (1–2): 57–61.

    Google Scholar 

  • Eichwald, E. d’.1868. Lethaea rossica ou Paléontologie de la Russie, 2, Période moyenne. Stuttgart: Schweizerbart.

    Google Scholar 

  • Fauchald, K. 1977. The Polychaete worms. Definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County, Science Series 28: 1–190.

    Google Scholar 

  • Fauvel, P. 1909. Deuxième note préliminaire sur les Polychètes provenant des campagnes de l’Hirondelle et de la Princesse-Alice, ou déposées dans la Musée Océanographique de Monaco. Bulletin de l’Institute Océanographique 142: 1–76.

    Google Scholar 

  • Fernández-López, S.R. 1985. El Bajociense en la Cordillera Ibérica. PhD thesis, Universidad Complutense, Madrid.

  • Fisher, N.I. 1993. Statistical Analysis of Circular Data. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Frizon de Lamotte, D., C. Raulin, N. Mouchot, J.C. Wrobel-Daveau, C. Blanpied, and J.C. Ringenbach. 2011. The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics 30: TC3002. doi:10.1029/2010TC002691.

    Article  Google Scholar 

  • Futterer, E. 1982. Experiments on the distinction of wave and current influenced shell accumulations. In Cyclic and Event Stratification, eds. G. Einsele, and A. Seilacher, 175–179. Berlin: Springer.

    Chapter  Google Scholar 

  • Goldfuss, A. 1826–1844. Petrefacta Germaniae: tam ea quae in Museo Universitatis Regiae Borussicae Fridericiae Wilhelmiae Rhenanae servantur quam aliaquae cunque in Museis Hoeninghusiano Muensteriano aliis que extant; iconibus et descriptionibus illustrata. Abbildungen und Beschreibungen der Petrefacten Deutschlands und der angränzenden Länder, unter Mitwirkung des Herrn Grafen Georg zu Münster, herausgegeben von August Goldfus[s]. Düsseldorf: Arnz and Co.

  • Grube, A.E. 1850. Die Familien der Anneliden. Archiv für Naturgeschichte 16: 249–364.

    Google Scholar 

  • Harzhauser, M., A. Djuricic, O. Mandic, M. Zuschin, P. Dorninger, C. Nothegger, B. Székely, E. Puttonen, G. Molnár, and N. Pfeifer. 2015. Disentangling the history of complex multi-phased shell beds based on the analysis of 3D point cloud data. Palaeogeography, Palaeoclimatology, Palaeoecology 437: 165–180.

    Article  Google Scholar 

  • Hauptmann, M. 1990. Untersuchungen zur Mikrofazies, Stratigraphie und Paläogeographie jurassischer Karbonat-Gesteine im Atlas-System Zentral-Marokkos. Berliner geowissenschaftliche Abhandlungen A119: 1–90.

    Google Scholar 

  • Ippolitov, A.P. 2007a. Contribution to the revision of some Late Callovian serpulids (Annelida, Polychaeta) of Central Russia: Part 1. Paleontological Journal 41 (3): 260–267.

    Article  Google Scholar 

  • Ippolitov, A.P. 2007b. Contribution to the revision of some Late Callovian serpulids (Annelida, Polychaeta) of Central Russia: Part 2. Paleontological Journal 41 (4): 429–436.

    Article  Google Scholar 

  • Ippolitov, A.P., O. Vinn, E.K. Kupriyanova, and M. Jäger. 2014. Written in stone: history of serpulid polychaetes through time. Memoirs of Museum Victoria 71: 123–159.

    Article  Google Scholar 

  • Jäger, M. 1983. Serpulidae (Polychaeta sedentaria) aus der norddeutschen höheren Oberkreide-Systematik, Stratigraphie, Ökologie. Geologisches Jahrbuch A68: 3–219.

    Google Scholar 

  • Jäger, M. 1993. Danian Serpulidae and Spirorbidae from NE Belgium and SE Netherlands: K/T boundary extinction, survival, and origination patterns. Contributions to Tertiary and Quaternary Geology 29 (3–4): 73–137.

    Google Scholar 

  • Jäger, M. 2005. Serpulidae und Spirorbidae (Polychaeta sedentaria) aus Campan und Maastricht von Norddeutschland, den Niederlanden, Belgien und angrenzenden Gebieten. Geologisches Jahrbuch A157 (for 2004): 121–249.

    Google Scholar 

  • Kelling, G., and P.F. Williams. 1967. Flume studies of the reorientation of pebbles and shells. The Journal of Geology 75: 243–367.

    Article  Google Scholar 

  • Kidwell, S.M., F.T. Fürsich, and T. Aigner. 1986. Conceptual framework for the analysis and classification of fossil concentrations. Palaios 1: 228–238.

    Article  Google Scholar 

  • Kreisa, R.D., and R.K. Bambach. 1982. The role of storm processes in generating shell beds in Paleozoic shelf environments. In Cyclic and Event Stratification, eds. G. Einsele, and A. Seilacher, 200–207. Berlin: Springer.

    Chapter  Google Scholar 

  • Kupriyanova, E.K. 1993. Deep-water Serpulidae (Annelida, Polychaeta) from Kurile-Kamchatka Trench, 2, Genera Bathyditrupa, Bathyvermilia, and Protis. Zoologicheskii Zhurnal 72 (3): 21–28.

    Google Scholar 

  • Kupriyanova, E.K., and A.P. Ippolitov. 2012. Are Mesozoic shallow-water serpulids (Annelida Polychaeta) ancestors of the Recent deep-sea fauna? In Program and Abstracts for the 13th International Deep-Sea Biology Symposium. Wellington, p. 223. New Zealand, 3–7 December 2012.

  • Kupriyanova, E.K., and A.P. Ippolitov. 2015. Deep-sea serpulids (Annelida: Polychaeta) in tetragonal tubes: on a tube convergence path from the Mesozoic to Recent. Zootaxa 4044 (2): 151–200.

    Article  Google Scholar 

  • Kupriyanova, E.K., O. Vinn, P.D. Taylor, J.W. Schopf, A.B. Kudryavtsev, and J. Bailey-Brock. 2014. Serpulids living deep: calcareous tubeworms beyond the abyss. Deep Sea Research I 90: 91–104.

    Article  Google Scholar 

  • Lamarck, J.-B. de. 1818. Histoire naturelle des animaux sans vertèbres, présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres, et la citation des principales espèces qui s’y rapportent; précédée d'une introduction offrant la détermination des caractères essentiels de l'animal, sa distinction du végétal et des autres. Paris: Deterville.

  • Laville, E. 1988. A multiple releasing and restraining stepover model for the Jurassic strike-slip basin of the Central High Atlas (Morocco). In Triassic–Jurassic rifting. Continental breakup and the origin of the Atlantic ocean and passive margins, ed. W. Mainspeizer, 499–523. Amsterdam: Elsevier.

  • Loriol, P. de, and E. Pellat. 1874. Monographie paléontologique et géologique des étages supérieurs de la formation Jurassique des environs de Boulogne-sur-Mer. Mémoires de la Société de Physique et de l’Histoire naturelle de Genève 23: 1–155.

    Google Scholar 

  • Lukeneder, S., A. Lukeneder, and G.W. Weber. 2014. Computed reconstruction of spatial ammonoid-shell orientation captured from digitized grinding and landmark data. Computers & Geosciences 64: 104–114.

    Article  Google Scholar 

  • Makowski, H. 1952. La faune callovienne de Łuków en Pologne (Fauna kelowejska z Łukowa). Palaeontologia Polonica 4: 1–64.

    Google Scholar 

  • Milhi, A., M. Ettaki, E.H. Chellai, and M. Hadri. 2002. Les formations lithostratigraphiques jurassiques du Haut-Atlas central (Maroc): corrélations et reconstitutions paléogéographiques. Revue de Paléobiologie 21: 241–256.

    Google Scholar 

  • Montfort, D. de. 1808. Conchyliologie systématique et classification méthodique des coquilles, 1. Coquilles univalves, cloisonées. Paris: F. Schoell.

  • Myrow, P.M. 1992. Bypass-zone tempestite facies model and proximality trends for an ancient muddy shoreline and shelf. Journal of Sedimentary Petrology 62: 99–115.

    Article  Google Scholar 

  • Nagle, J.S. 1967. Wave and current orientation of shells. Journal of Sedimentary Petrology 37: 1124–1138.

    Google Scholar 

  • Nielsen, K. 1931. Serpulidae from the Senonian and Danian deposits of Denmark. Meddelelser fra Dansk geologisk Forening 8: 71–113.

    Google Scholar 

  • Oschmann, W. 1994. Der Kimmeridge Clay von Yorkshire als Beispiel eines fossilen Sauerstoff-kontrollierten Milieus. Beringeria 9: 3–153.

    Google Scholar 

  • Parsch, K.O.A. 1956. Die Serpuliden-Fauna des südwestdeutschen Jura. Palaeontographica A107: 211–240.

    Google Scholar 

  • Parsch, K.O.A. 1961. Einige Serpuliden (Chaetopoda) aus dem Jura von Alberta, Canada. Stuttgarter Beiträge zur Naturkunde 63: 1–6.

    Google Scholar 

  • PCI Geomatics-Geomatica. 2015. Software help. Richmond Hill: PCI Geomatics Enterprises.

    Google Scholar 

  • Pérez-López, A. 2001. Significance of pot and gutter casts in a Middle Triassic carbonate platform, Betic Cordillera, southern Spain. Sedimentology 48: 1371–1388.

    Article  Google Scholar 

  • Pewsey, A., M. Neuhäuser, and G.D. Ruxton. 2013. Circular Statistics in R. Oxford: Oxford University Press.

    Google Scholar 

  • Pierre, A., C. Durlet, P. Razin, and E.H. Chellai. 2010. Spatial and temporal distribution of ooids along a Jurassic carbonate ramp: Amellago outcrop transect, High-Atlas, Morocco. In Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle East: Stratigraphic and Diagenetic Reference Models, eds. F.S.P. van Buchem, K.D. Gerdes, and M. Esteban, 65–88. London: Geological Society. (Geological Society of London, Special Publications 329).

    Google Scholar 

  • Potter, P.E., and F.J. Pettijohn. 1977. Paleocurrents and Basin Analysis, 2nd ed. Berlin: Springer.

    Book  Google Scholar 

  • Pugaczewska, H. 1986. Bivalvia of the Polish Middle Jurassic and remarks on their paleoecology. Acta Palaeontologica Polonica 31 (1–2): 27–83.

    Google Scholar 

  • Radwańska, U. 2004. Tube-dwelling polychaetes from the Upper Oxfordian of Wapienno/Bielawy, Couiavia region, north-central Poland. Acta Geologica Polonica 54 (1): 35–52.

    Google Scholar 

  • Rafinesque, C.S. 1815. Analyse de la nature ou tableau de l’univers et des corps organisés. Palerme (l’Auteur).

  • Regenhardt, H. 1961. Serpulidae (Polychaeta sedentaria) aus der Kreide Mitteleuropas, ihre ökologische, taxionomische und stratigraphische Bewertung. Mitteilungen aus dem geologischen Staatsinstitut in Hamburg 30: 5–115.

    Google Scholar 

  • Renier, S.A. 1804. Tavola alfabetica delle Conchiglie Adriatiche. Nominate dietro il Sistemo di Linneo, Edizione di Gmelin, Padua. (This publication is listed as “a work rejected for nomenclatural purposes, ICZN opinion 427″).

  • Rouse, G.W., and K. Fauchald. 1997. Cladistics and polychaetes. Zoologica Scripta 26 (2): 139–204.

    Article  Google Scholar 

  • Sadki, D. 1992. Les variations de facies et les discontinuites de sedimentation dans le Lias-Dogger du Haut-Atlas Central (Maroc): chronologie, characterisation, correlations. Bulletin de la Société Géologique de France 163: 179–186.

    Google Scholar 

  • Sadki, D. 1994. Proposition de la région de Rich (Haut Atlas Central marocain) comme stratotype auxiliaire subméditerranéen pour la limite Aalénien-Bajocien. Geobios Mémoire Spécial 17: 431–440.

    Article  Google Scholar 

  • Sadki, D. 2015. Integrated biostratigraphy across the Aalenian/Bajocian boundary of the Central High Atlas, Morocco. Volumina Jurassica 13 (1): 27–42.

    Google Scholar 

  • Schlögl, J., J. Michalík, K. Zágoršek, and F. Atrops. 2008. Early Tithonian serpulid-dominated cavity-dwelling fauna, and the recruitment pattern of the serpulid larvae. Journal of Paleontology 82 (2): 351–361.

    Article  Google Scholar 

  • Schwarzacher, W. 1963. Orientation of crinoids by current action. Journal of Sedimentary Petrology 33: 580–586.

    Google Scholar 

  • Seilacher, A., E.B. Olivero, S.H. Butts, and M. Jäger. 2008. Soft-bottom tubeworms: from irregular to programmed shell growth. Lethaia 41: 349–365.

    Article  Google Scholar 

  • Sklenář, J. 2013. Brachiopoda and polychaeta in Taphocenoses of the Bohemian Cretaceous Basin. Unpublished Ph.D. thesis. Institute of Geology and Paleontology, Faculty of Natural Sciences, Charles University, Prague, 1–50.

  • Sowerby, J.C. de. 1829. The mineral conchology of Great Britain, vol. 6. London: R. Taylor.

    Google Scholar 

  • Specht, R.W., and R.L. Brenner. 1979. Storm-wave genesis of bioclastic carbonates in Upper Jurassic epicontinental mudstones, East-Central Wyoming. Journal of Sedimentary Petrology 49: 1307–1322.

    Google Scholar 

  • Sturani, C. 1971. Ammonites and stratigraphy of the “Posidonia alpine” beds of the Venetian Alps (Middle Jurassic, mainly Bajocian). Memorie degli Istituti di Geologia e Mineralogia dell’Universita di Padova 28: 1–190.

    Google Scholar 

  • Šilhavý, J., J. Minár, P. Mentlík, and J. Sládek. 2016. A new artefacts resistant method for automatic lineament extraction using Multi-Hillshade Hierarchic Clustering (MHHC). Computers & Geosciences 92: 9–20.

    Article  Google Scholar 

  • Taylor, P.D., and M.A. Wilson. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62 (1): 1–103.

    Article  Google Scholar 

  • ten Hove, H.A., and P. van den Hurk. 1993. A review of Recent and fossil serpulid ‘reefs’; actuopalaeontology and the ‘Upper Malm’ serpulid limestones in NW Germany. Geologie en Mijnbouw 72: 23–67.

    Google Scholar 

  • ten Hove, H.A., and E.K. Kupriyanova. 2009. Taxonomy of Serpulidae (Annelida, Polychaeta): The state of affairs. Zootaxa 2036: 1–126.

    Google Scholar 

  • Vinn, O. 2005. The tube ultrastructure of serpulids (Annelida, Polychaeta) Pentaditrupa subtorquata, Cretaceous, and Nogrobs cf. vertebralis, Jurassic, from Germany. Proceedings of the Estonian Academy of Sciences, Geology 54: 260–265.

    Google Scholar 

  • Vinn, O. 2007. Taxonomic implications and fossilization of tube ultrastructure of some Cenozoic serpulids (Annelida, Polychaeta) from Europe. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 244: 115–128.

    Article  Google Scholar 

  • Vinn, O., and H. Furrer. 2008. Tube structure and ultrastructure of serpulids from the Jurassic of France and Switzerland, its evolutionary implications. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 250: 129–135.

    Article  Google Scholar 

  • Vinn, O., and Kupriyanova, E.K. 2011. Evolution of a dense outer protective tube layer in serpulids (Polychaeta, Annelida). Carnets de Géologie/Notebooks on Geology. Letter 2011/05 (CG2011_L05) 2011: 137–147.

  • Vinn, O., and M.A. Wilson. 2010. Sabellid-dominated shallow water calcareous polychaete tubeworm association from the equatorial Tethys Ocean (Matmor Formation, Middle Jurassic, Israel). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 258 (1): 31–38.

    Article  Google Scholar 

  • Vinn, O., E.K. Kupriyanova, and S. Kiel. 2012. Systematics of serpulid tubeworms (Annelida, Polychaeta) from Cretaceous and Cenozoic hydrocarbon-seep deposits in North America and Europe. Neues Jahrbuch für Geologie and Paläontologie, Abhandlungen 265: 315–325.

    Article  Google Scholar 

  • Vinn, O., H.A. ten Hove, and H. Mutvei. 2008a. On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta). Palaeontology 51 (2): 295–301.

    Article  Google Scholar 

  • Vinn, O., H.A. ten Hove, H. Mutvei, and K. Kirsimäe. 2008b. Ultrastructure and mineral composition of serpulid tubes (Polychaeta, Annelida). Zoological Journal of the Linnean Society 154 (4): 633–650.

    Article  Google Scholar 

  • Vinn, O., M. Jäger, and K. Kirsimäe. 2008c. Microscopic evidence of serpulid affinities of the problematic fossil tube ‘Serpulaetalensis from the Lower Jurassic of Germany. Lethaia 41 (4): 417–421.

    Article  Google Scholar 

  • Vinn, O., K. Hryniewicz, C.T.S. Little, and H.A. Nakrem. 2014. A Boreal serpulid fauna from Volgian-Ryazanian (latest Jurassic–earliest Cretaceous) shelf sediments and hydrocarbon seeps from Svalbard. Geodiversitas 36 (4): 527–540.

    Article  Google Scholar 

  • Waagen, W. 1867. Ueber die Zone des Ammonites Sowerbyi. Geognostisch-Paläontologische Beiträge 1 (3): 507–668.

    Google Scholar 

  • Walch, J.E.I. 1769. Die Naturgeschichte der Versteinerungen zur Erläuterung der Knorrischen Sammlung von Merkwürdigkeiten der Natur. Des zweyten Theils zweyter Abschnitt. Nürnberg: Paul Jonathan Felßecker.

    Google Scholar 

  • Weedon, M.J. 1994. Tube microstructure of Recent and Jurassic serpulid polychaetes and the question of the Palaeozoic ‘spirorbids’. Acta Palaeontologica Polonica 39: 1–15.

    Google Scholar 

  • Wendt, J., and T. Aigner. 1982. Condensed Griotte facies and cephalopod accumulations in the Upper Devonian of the Eastern Anti-Atlas, Morocco. In Cyclic and Event Stratification, eds. G. Einsele, and A. Seilacher, 326–332. Berlin: Springer.

    Chapter  Google Scholar 

  • Westermann, G.E.G. 1954. Monographie der Otoidae (Ammonoidea), Otoites, Trilobiticeras, Itinsaites, Epalxites, Germanites, Masckeites (Pseudotoites, Polyplectites), Normannites. Beihefte zum Geologischen Jahrbuch 15: 1–364.

    Google Scholar 

  • Wetzel, A., and C.A. Meyer. 2006. The dangers of high-rise living on a muddy seafloor; an example of crinoids from shallow-water mudstones (Aalenian, northern Switzerland). Palaios 21 (2): 155–167.

    Article  Google Scholar 

  • Wilson, M.A., H.R. Feldman, J.C. Bowen, and Y. Avni. 2008. A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (late Callovian) of southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 263 (1): 24–29.

    Article  Google Scholar 

  • Zatoń, M., M.A. Wilson, and E. Zavar. 2011. Diverse sclerozoan assemblages encrusting large bivalve shells from the Callovian (Middle Jurassic) of southern Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 307 (1): 232–244.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Ministère de l‘Energie et des Mines in Rabat for permissions that made the fieldwork and sample transport possible. We thank Olev Vinn and Mike Reich for comments and suggestions. This research was supported by projects APVV 0644-10, VEGA 2/0136/15 and DKRVO 2016/06.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and A.T. designed the sampling, J.S., A.T., T.S., D.S. and M.I. collected samples, T.K. M.J. and J. Sk. performed palaeoecological, taxonomic and photographic analyses, T.S. performed extraction of fossil lineations and statistical analyses, and all authors contributed to palaeoenvironmental interpretations and revisions.

Corresponding author

Correspondence to Ján Schlögl.

Additional information

Handling editor: Mike Reich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12542_2017_381_MOESM1_ESM.jpg

Supplementary Fig. 1. Comparison of automated extraction of edges and manual measurement of fossil orientation on top of slab 5. A Image of slab surface. B Automatically extracted edges and distribution of angular data. C Manually measured orientation of elongated bioclasts (serpulid tubes and gastropods) and distribution of angular data. D, E Two-sample quantile–quantile plot and Fisher uniformity plot of data from automated and manual measurements. F Diagram collating angular distributions and mean directions of data from automated and manual measurements (JPEG 6032 kb)

12542_2017_381_MOESM2_ESM.jpg

Supplementary Fig. 2. Departure of orientations of automatically extracted fossil lineations from circular uniform distribution (Fisher uniformity plots, Fisher 1993) on eight top and six bottom surfaces of serpulid shell bed slabs. Note the generally larger departure from uniformity on top surfaces. Each angular dataset was rotated through α = π/4 from horizontal position of mean direction (JPEG 839 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlögl, J., Kočí, T., Jäger, M. et al. Tempestitic shell beds formed by a new serpulid polychaete from the Bajocian (Middle Jurassic) of the Central High Atlas (Morocco). PalZ 92, 219–240 (2018). https://doi.org/10.1007/s12542-017-0381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-017-0381-5

Keywords

Schlüsselwörter

Navigation