Skip to main content
Log in

Microstructure-property relationships in materials

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Microstructures of materials differ fundmentally from the structures of isolated objects, in that objects normally possess specific form and size, whereas microstructure goes on and on as a continnum, never appearing quite the same in any two places and having no beginning or ending. Such “unbounded irregular structures” are amenable to precise characterization by the use of parameters that can be expressed in terms of totals in unit volume of material, sometimes called the “global parameters”. The methods of quantitative microscopy have, thus far, provided eight parameters of this kind, namely: length of line, area of surface, volume fraction, curvature of line, torsion of line, curvature of surface, number, and connectivity. Whenever a physical property can be related simply and directly to one of these parameters, the relation is insensitive to the value of any other geometric property of the structure, that is, it is shape-insensitive. Average geometric properties of microstructure can be had by taking ratios of the fundamental parameters. These can be used to formulate structure-property relationships when the average is made up of uniquely defined components. This condition has been found to prevail when the structure is in a configuration of minimum energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. DeHoff and F. N. Rhines:Quantitative Microscopy, McGraw-Hill, New York, N.Y., 1965; E.E. Underwood:Quantitative Stereology, Addison-Wesley, Reading, Mass., 1970; E. R. Weibel and H. Elias:Quantitative Methods in Morphometry, Springer Verlag, Berlin, 1967.

    Google Scholar 

  2. R. T. DeHoff and S. M. Gehl:Proceedings 4th International Congress for Stereology, Gaithersburg Md., 1975, E. E. Underwood, ed., National Bureau of Standards, Special Publication 431, U.S. Govt. Printing Office, Washington D.C., January 1976, pp. 29–40.

    Google Scholar 

  3. R. L. Fullman:Trans. AIME, 1953, vol. 197, pp. 1267–68.

    Google Scholar 

  4. R. T. DeHoff and F. N. Rhines:Trans. TMS-AIME, 1961, vol. 221, pp. 975–82.

    CAS  Google Scholar 

  5. F. N. Rhines, K. R. Craig, and D. A. Rousse:Met. Trans. A, vol. 7A, pp. 1729–34.

  6. E. H. Aigeltinger and R. T. DeHoff:Met. Trans. A, 1975, vol. 6A, pp. 1853–62.

    Article  CAS  Google Scholar 

  7. W. J. Babyak and F. N. Rhines:Trans. TMS-AIME, 1960, vol. 218, pp. 21–23.

    Google Scholar 

  8. R. E. Reed-Hill:Physical Metallurgy Principles, 2nd ed., p. 831, D. Van Nostrand Co., New York, 1973.

    Google Scholar 

  9. F. N. Rhines, K. R. Craig, and R. T. DeHoff:Met. Trans., 1974, vol. 5, pp. 413–25.

    Article  CAS  Google Scholar 

  10. R. A. Gregg and F. N. Rhines:Met. Trans., 1973, vol. 4, pp. 1365–74.

    Article  CAS  Google Scholar 

  11. R. T. DeHoff, F. N. Rhines, and E. D. Whitney: Final Report to U.S. Atomic Energy Commission on Contract AT (40-1) 4212, pp. 60–70, University of Florida, 1974.

  12. E. Scheil:Z. anorg. allg. Chem., 1931, vol. 201, pp. 259;Z. Metallk., 1935, vol. 27, pp. 199–208; 1936, vol. 28, pp. 340–43;F. Schücker: inQuantitative Microscopy, chapt. 7, pp. 210, McGraw-Hill, New York, N.Y., 1965.

    Article  CAS  Google Scholar 

  13. J. Frenkel:J. Phys., 1945, vol. 9, no. 5, pp. 385–91; C. Herring:The Physics of Powder Metallurgy, W. E. Kingston, ed., pp. 143–79, McGraw-Hill, New York, N.Y., 1951.

    Google Scholar 

  14. C. S. Smith and L. Guttman:Trans. AIME, 1953, vol. 197, pp. 81–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhines, F.N. Microstructure-property relationships in materials. Metall Trans A 8, 127–133 (1977). https://doi.org/10.1007/BF02677274

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02677274

Keywords

Navigation