Skip to main content
Log in

Thermosolutal convection during directional solidification

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

During solidification of a binary alloy at constant velocity vertically upward, thermosolutal convection can occur if the solute rejected at the crystal-melt interface decreases the density of the melt. We assume that the crystal-melt interface remains planar and that the flow field is periodic in the horizontal direction. The time-dependent nonlinear differential equations for fluid flow, concentration, and temperature are solved numerically in two spatial dimensions for small Prandtl numbers and moderately large Schmidt numbers. For slow solidification velocities, the thermal field has an important stabilizing influence: near the onset of instability the flow is confined to the vicinity of the crystal-melt interface. Further, for slow velocities, as the concentration increases, the horizontal wavelength of the flow decreases rapidly — a phenomenon also indicated by linear stability analysis. The lateral in-homogeneity in solute concentration due to convection is obtained from the calculations. For a narrow range of solutal Rayleigh numbers and wavelengths, the flow is periodic in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Carruthers: inPreparation and Properties of Solid State Materials, W. R. Wilcox and R. A. Lefever, eds., Dekker, New York, NY, 1977, vol. 3, p. 1.

    Google Scholar 

  2. D. T. J. Hurle:Current Topics in Materials Science, E. Kaldis and H. J. Scheel, eds., North-Holland, Amsterdam, 1977, vol. 2, p. 549.

  3. S.M. Pimputkar and S. Ostrach:J. Crystal Growth, 1981, vol. 55, p. 614.

    Article  CAS  Google Scholar 

  4. S.R. Coriell, M. R. Cordes, W.J. Boettinger, and R. F. Sekerka:J. Crystal Growth, 1980, vol. 49, p. 13.

    Article  CAS  Google Scholar 

  5. S.R. Coriell, M. R. Cordes, W. J. Boettinger, and R. F. Sekerka:Adv. Space Res., 1981, vol. 1, p. 5.

    Article  CAS  Google Scholar 

  6. S.R. Coriell and R.F. Sekerka:Physico Chemical Hydrodynamics, 1981, vol. 2, p. 281.

    CAS  Google Scholar 

  7. R. J. Schaefer and S. R. Coriell: inMaterials Processing in the Reduced Gravity Environment of Space, G.E. Rindone, ed., North- Holland, Amsterdam, 1982, p. 479.

  8. D. T. J. Hurle, E. Jakeman, and A. A. Wheeler:J. Crystal Growth, 1982, vol. 58, p. 163.

    Article  CAS  Google Scholar 

  9. D.T.J. Hurle, E. Jakeman, and A.A. Wheeler:Phys. Fluids, 1983, vol. 26, p. 624.

    Article  CAS  Google Scholar 

  10. J. S. Turner:Buoyancy Effects in Fluids, Cambridge University Press, London, England, 1973, chap. 8.

    Google Scholar 

  11. J. Fromm:Methods of Computational Physics, Vol. 3, Fundamental Methods in Hydrodynamics, B. Alder, S. Fernbach, and M. Rotenberg, eds., Academic Press, New York, NY, 1964, p. 345.

    Google Scholar 

  12. E.C. DuFort and S.P. Frankel:Math. Tables and Other Aids to Computation, 1953, vol. 3, p. 135.

    Article  Google Scholar 

  13. R. E. Richtmyer and K. W. Morton:Difference Methods for Initial Value Problems, Interscience Publishers, New York, NY, 1967, p. 211.

    Google Scholar 

  14. P. N. Swarztrauber and R. Sweet:ACM Trans. Math. Soft., 1979, vol. 5, p. 352.

    Article  Google Scholar 

  15. V.G. Smith, W. A. Tiller, and J. W. Rutter:Can. J. Phys., 1955, vol. 33, p. 723.

    CAS  Google Scholar 

  16. C. J. Chang and R. A. Brown:J. Crystal Growth, 1983, vol. 63, p. 343.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Mathematical Analysis Division, Center for Applied Mathematics, National Bureau of Standards, Washington, DC 20234.

This paper is based on a presentation made at the symposium “Fluid Flow at Solid-Liquid Interfaces” held at the fall meeting of the TMS-AIME in Philadelphia, PA on October 5, 1983 under the TMS-AIME Solidification Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McFadden, G.B., Rehm, R.G., Coriell, S.R. et al. Thermosolutal convection during directional solidification. Metall Trans A 15, 2125–2137 (1984). https://doi.org/10.1007/BF02647095

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647095

Keywords

Navigation