Skip to main content

Advertisement

Log in

Comparison of Fraction Unbound Between Liver Homogenate and Hepatocytes at 4°C

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Fraction unbound (fu) values obtained from liver or hepatocyte homogenate with equilibrium dialysis (fu,homo) or the hepatocyte partition coefficient method at 4°C (fu,c) are both frequently used to estimate unbound drug concentrations (Cu) and unbound partition coefficient (Kpuu) of the liver. Literature data are somewhat controversial on this topic: some reported that the two methods gave comparable fu values, while others showed that they had no correlation. To better understand the two approaches, 44 structurally diverse compounds with wide ranges of fu values were used for the comparison study. The results indicate that fu values from the two methods are comparable with an average fold error of 2.9-fold and a bias of 1.0. Although some outliers were observed, the reasons are not entirely clear and further investigations are needed. As the fu data from both methods are correlated, fu,homo measurement using tissue homogenate is recommended over cells at 4°C (fu,c) in early drug discovery. This is because fu,homo method is more reliable, has good in vivo predictability, and feasibility for any tissue types where representative cells may not be readily available. The approach can be used to estimate Cu and Kpuu of tissues in order to develop pharmacokinetic/pharmacodynamic relationships, and to estimate therapeutic indices, as well as to predict drug-drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Billington S, Nguyen TB, Kumar V, Ishida K, Unadkat JD, Billington S, et al. Positron emission tomography imaging of [(11) C]Rosuvastatin hepatic concentrations and hepatobiliary transport in humans in the absence and presence of Cyclosporin A. Clin Pharmacol Ther. 2019;106(5):1056–66.

    Article  CAS  Google Scholar 

  2. K-i K, Tanaka M, Ishii A, Katayama Y, Nakaoka T, Irie S, et al. A clinical quantitative evaluation of hepatobiliary transport of [11C] dehydropravastatin in humans using positron emission tomography. Drug Metab Dispos. 2018;46(5):719–28. https://doi.org/10.1124/dmd.118.080408.

    Article  CAS  Google Scholar 

  3. Li R, Kimoto E, Niosi M, Tess DA, Lin J, Tremaine LM, et al. A study on pharmacokinetics of bosentan with systems modeling, part 2: prospectively predicting systemic and liver exposure in healthy subjects. Drug Metab Dispos. 2018;46(4):357–66, S1-S14. https://doi.org/10.1124/dmd.117.078808.

    Article  CAS  PubMed  Google Scholar 

  4. Riccardi K, Lin J, Li Z, Niosi M, Ryu S, Hua W, et al. Novel method to predict in vivo liver-to-plasma Kpuu for OATP substrates using suspension hepatocytes. Drug Metab Dispos. 2017;45(5):576–80. https://doi.org/10.1124/dmd.116.074575.

    Article  CAS  PubMed  Google Scholar 

  5. Morse BL, Cai H, MacGuire JG, Fox M, Zhang L, Zhang Y, et al. Rosuvastatin liver partitioning in cynomolgus monkeys: measurement in vivo and prediction using in vitro monkey hepatocyte uptake. Drug Metab Dispos. 2015;43(11):1788–94. https://doi.org/10.1124/dmd.115.065946.

    Article  CAS  PubMed  Google Scholar 

  6. Orozco CC, Atkinson K, Ryu S, Chang G, Keefer C, Lin J, et al. Structural attributes influencing unbound tissue distribution. Eur J Med Chem. 2020;185:111813. https://doi.org/10.1016/j.ejmech.2019.111813.

    Article  CAS  PubMed  Google Scholar 

  7. Riccardi K, Li Z, Brown JA, Gorgoglione MF, Niosi M, Gosset J, et al. Determination of unbound partition coefficient and in vitro-in vivo extrapolation for SLC13A transporter-mediated uptake. Drug Metab Dispos. 2016;44(10):1633–42. https://doi.org/10.1124/dmd.116.071837.

    Article  CAS  PubMed  Google Scholar 

  8. Riccardi K, Ryu S, Lin J, Yates P, Tess D, Li R, et al. Comparison of species and cell-type differences in fraction unbound of liver tissues, hepatocytes, and cell lines. Drug Metab Dispos. 2018;46(4):415–21, S1-S4. https://doi.org/10.1124/dmd.117.079152.

    Article  CAS  PubMed  Google Scholar 

  9. Riede J, Camenisch G, Huwyler J, Poller B. Current in vitro methods to determine hepatic Kpuu: a comparison of their usefulness and limitations. J Pharm Sci. 2017;106(9):2805–14. https://doi.org/10.1016/j.xphs.2017.03.025.

    Article  CAS  PubMed  Google Scholar 

  10. Iwasaki S, Kosugi Y, Zhu AZX, Nakagawa S, Sano N, Funami M, et al. Application of unbound liver-to-plasma concentration ratio to quantitative projection of cytochrome P450-mediated drug-drug interactions using physiologically based pharmacokinetic modelling approach. Xenobiotica. 2019:Ahead of Print. https://doi.org/10.1080/00498254.2018.1547461.

  11. Mateus A, Matsson P, Artursson P. A high-throughput cell-based method to predict the unbound drug fraction in the brain. J Med Chem. 2014;57(7):3005–10. https://doi.org/10.1021/jm401963n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshikado T, Toshimoto K, Nakada T, Ikejiri K, Kusuhara H, Maeda K, et al. Comparison of methods for estimating unbound intracellular-to-medium concentration ratios in rat and human hepatocytes using statins. Drug Metab Dispos. 2017;45(7):779–89. https://doi.org/10.1124/dmd.116.074823.

    Article  CAS  PubMed  Google Scholar 

  13. Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos. 2013;34(1):45–78. https://doi.org/10.1002/bdd.1823.

    Article  CAS  PubMed  Google Scholar 

  14. Izumi S, Nozaki Y, Komori T, Takenaka O, Maeda K, Kusuhara H, et al. Comparison of the predictability of human hepatic clearance for organic anion transporting polypeptide substrate drugs between different in vitro-in vivo extrapolation approaches. J Pharm Sci. 2017;106(9):2678–87. https://doi.org/10.1016/j.xphs.2017.02.012.

    Article  CAS  PubMed  Google Scholar 

  15. Dipolo R, Latorre R. Effect of temperature on membrane potential and ionic fluxes in intact and dialyzed barnacle muscle fibers. J Physiol. 1972;225(2):255–73. https://doi.org/10.1113/jphysiol.1972.sp009939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fischbarg J. Ionic permeability changes as the basis of the thermal dependence of the resting potential in barnacle muscle fibers. J Physiol. 1972;224(1):149–71. https://doi.org/10.1113/jphysiol.1972.sp009886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Durand T, Delmas-Beauvieux M-C, Canioni P, Gallis J-L. Role of intracellular buffering power on the mitochondria-cytosol pH gradient in the rat liver perfused at 4°C. Cryobiology. 1999;38(1):68–80. https://doi.org/10.1006/cryo.1999.2152.

    Article  CAS  PubMed  Google Scholar 

  18. Di L, Umland JP, Trapa PE, Maurer TS. Impact of recovery on fraction unbound using equilibrium dialysis. J Pharm Sci. 2012;101(3):1327–35. https://doi.org/10.1002/jps.23013.

    Article  CAS  PubMed  Google Scholar 

  19. Hay T, Jones R, Beaumont K, Kemp M. Modulation of the partition coefficient between octanol and buffer at pH 7.4 and pKa to achieve the optimum balance of blood clearance and volume of distribution for a series of tetrahydropyran histamine type 3 receptor antagonists. Drug Metab Dispos. 2009;37(9):1864–70. https://doi.org/10.1124/dmd.109.027888.

    Article  CAS  PubMed  Google Scholar 

  20. Li R, Bi Y-A, Lai Y, Sugano K, Steyn SJ, Trapa PE, et al. Permeability comparison between hepatocyte and low efflux MDCKII cell monolayer. AAPS J. 2014;16(4):802–9. https://doi.org/10.1208/s12248-014-9616-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shalaeva M, Kenseth J, Lombardo F, Bastin A. Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci. 2008;97(7):2581–606. https://doi.org/10.1002/jps.21287.

    Article  CAS  PubMed  Google Scholar 

  22. Riccardi KA, Tess DA, Lin J, Patel R, Ryu S, Atkinson K, et al. A novel unified approach to predict human hepatic clearance for both enzyme- and transporter-mediated mechanisms using suspended human hepatocytes. Drug Metab Dispos. 2019;47(5):484–92. https://doi.org/10.1124/dmd.118.085639.

    Article  CAS  PubMed  Google Scholar 

  23. Boron WF. Regulation of intracellular pH. Adv Physiol Educ. 2004;28(1–4):160–79.

    Article  Google Scholar 

  24. Yoshida S, Hotsubo K, Kawamura Y, Murai M, Arakawa K, Takezawa D. Alterations of intracellular pH in response to low temperature stresses. J Plant Res. 1999;112(1106):225–36. https://doi.org/10.1007/PL00013879.

    Article  CAS  Google Scholar 

  25. Ruffin VA, Salameh AI, Boron WF, Parker MD. Intracellular pH regulation by acid-base transporters in mammalian neurons. Front Physiol. 2014;5:43.

    Article  Google Scholar 

  26. Yabe Y, Galetin A, Houston JB. Kinetic characterization of rat hepatic uptake of 16 actively transported drugs. Drug Metab Dispos. 2011;39(10):1808–14. https://doi.org/10.1124/dmd.111.040477.

    Article  CAS  PubMed  Google Scholar 

  27. Margolis JM, Obach RS. Impact of nonspecific binding to microsomes and phospholipid on the inhibition of cytochrome P4502D6: implications for relating in vitro inhibition data to in vivo drug interactions. Drug Metab Dispos. 2003;31(5):606–11. https://doi.org/10.1124/dmd.31.5.606.

    Article  CAS  PubMed  Google Scholar 

  28. Ryu S, Novak J, Patel R, Yates P, Di L. The impact of low temperature on fraction unbound for plasma and tissue. Biopharm Drug Dispos. 2018;39:437–42.

    Article  CAS  Google Scholar 

  29. Li Z, Maurer TS, Di L. Theoretical considerations for direct translation of unbound liver-to-plasma partition coefficient from in vitro to in vivo. AAPS J. 2019;21(3):43.

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the help of Dr. Carolyn A. Leverett and Mr. John C. Murch in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Di.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riccardi, K., Ryu, S., Tess, D. et al. Comparison of Fraction Unbound Between Liver Homogenate and Hepatocytes at 4°C. AAPS J 22, 91 (2020). https://doi.org/10.1208/s12248-020-00476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00476-7

KEY WORDS

Navigation