Skip to main content
Log in

Regularized numerical methods for the logarithmic Schrödinger equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present and analyze two numerical methods for the logarithmic Schrödinger equation (LogSE) consisting of a regularized splitting method and a regularized conservative Crank–Nicolson finite difference method (CNFD). In order to avoid numerical blow-up and/or to suppress round-off error due to the logarithmic nonlinearity in the LogSE, a regularized logarithmic Schrödinger equation (RLogSE) with a small regularized parameter \(0<\varepsilon \ll 1\) is adopted to approximate the LogSE with linear convergence rate \(O(\varepsilon )\). Then we use the Lie–Trotter splitting integrator to solve the RLogSE and establish its error bound \(O(\tau ^{1/2}\ln (\varepsilon ^{-1}))\) with \(\tau >0\) the time step, which implies an error bound at \(O(\varepsilon +\tau ^{1/2}\ln (\varepsilon ^{-1}))\) for the LogSE by the Lie–Trotter splitting method. In addition, the CNFD is also applied to discretize the RLogSE, which conserves the mass and energy in the discretized level. Numerical results are reported to confirm our error bounds and to demonstrate rich and complicated dynamics of the LogSE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akrivis, G.D.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59(1), 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antoine, X., Bao, W., Besse, C.: Computational methods for dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 184, 2621–2633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ardila, A.H.: Orbital stability of Gausson solutions to logarithmic Schrödinger equations. Electron. J. Differ. Eq. 335, 1–9 (2016)

    Google Scholar 

  5. Avdeenkov, A.V., Zloshchastiev, K.G.: Quantum Bose liquids with logarithmic nonlinearity: self-sustainability and emergence of spatial extent. J. Phys. B: Atomic Mol. Opt. Phys. 44(19), 195303 (2011)

    Article  Google Scholar 

  6. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50(2), 492–521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, W., Cai, Y.: Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math. Comp. 82(281), 99–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bao, W., Carles, R., Su, C., Tang, Q.: Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation. SIAM J. Numer. Anal. 57(2), 657–680 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, W., Jaksch, D., Markowich, P.A.: Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. J. Comput. Phys. 187(1), 318–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175(2), 487–524 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bao, W., Tang, Q., Xu, Z.: Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys. 235, 423–445 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42(3), 934–952 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40(1), 26–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Białynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100(1–2), 62–93 (1976)

    Article  MathSciNet  Google Scholar 

  15. Białynicki-Birula, I., Mycielski, J.: Gaussons: solitons of the logarithmic Schrödinger equation. Special issue on solitons in physics. Phys. Scr. 20, 539–544 (1979)

    Article  MATH  Google Scholar 

  16. Buljan, H., Šiber, A., Soljačić, M., Schwartz, T., Segev, M., Christodoulides, D.: Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media. Phys. Rev. E 68(3), 036607 (2003)

    Article  MathSciNet  Google Scholar 

  17. Carles, R.: On Fourier time-splitting methods for nonlinear Schrödinger equations in the semiclassical limit. SIAM J. Numer. Anal. 51(6), 3232–3258 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carles, R., Gallagher, I.: Universal dynamics for the defocusing logarithmic Schrödinger equation. Duke Math. J. 167(9), 1761–1801 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carles, R., Gallo, C.: On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit II. Anal. Regul. Numer. Math. 136(1), 315–342 (2017)

    Article  MATH  Google Scholar 

  20. Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. 7(10), 1127–1140 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. New York University Courant Institute of Mathematical Sciences, New York (2003)

  22. Cazenave, T., Haraux, A.: Équations d’évolution avec non linéarité logarithmique. Ann. Fac. Sci. Toulouse Math. (5) 2(1), 21–51 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  MATH  Google Scholar 

  24. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148(2), 397–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Debussche, A., Faou, E.: Modified energy for split-step methods applied to the linear Schrödinger equation. SIAM J. Numer. Anal. 47(5), 3705–3719 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Descombes, S., Thalhammer, M.: The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime. IMA J. Numer. Anal. 33(2), 722–745 (2012)

    Article  MATH  Google Scholar 

  27. Faou, E., Grébert, B.: Hamiltonian interpolation of splitting approximations for nonlinear PDEs. Found. Comput. Math. 11(4), 381–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gauckler, L., Lubich, C.: Splitting integrators for nonlinear Schrödinger equations over long times. Found. Comput. Math. 10(3), 275–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Glassey, R.: Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comp. 58(197), 83–102 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guerrero, P., López, J.L., Nieto, J.: Global \(H^1\) solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal. Real World Appl. 11(1), 79–87 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Guo, B.: The convergence of numerical method for nonlinear Schrödinger equation. J. Comput. Math. 4(2), 121–130 (1986)

    MathSciNet  MATH  Google Scholar 

  32. Hansson, T., Anderson, D., Lisak, M.: Propagation of partially coherent solitons in saturable logarithmic media: a comparative analysis. Phys. Rev. A 80(3), 033819 (2009)

    Article  Google Scholar 

  33. Hayashi, M.: A note on the nonlinear Schrödinger equation in a general domain. Nonlinear Anal. 173, 99–122 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hefter, E.F.: Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics. Phys. Rev. A 32, 1201–1204 (1985)

    Article  Google Scholar 

  35. Henning, P., Peterseim, D.: Crank–Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials. Math. Models Methods Appl. Sci. 27(11), 2147–2184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hernandez, E.S., Remaud, B.: General properties of Gausson-conserving descriptions of quantal damped motion. Physica A 105, 130–146 (1980)

    Article  MathSciNet  Google Scholar 

  37. Ignat, L.I.: A splitting method for the nonlinear Schrödinger equation. J. Diff. Eq. 250(7), 3022–3046 (2011)

    Article  MATH  Google Scholar 

  38. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779–1807 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Krolikowski, W., Edmundson, D., Bang, O.: Unified model for partially coherent solitons in logarithmically nonlinear media. Phys. Rev. E 61, 3122–3126 (2000)

    Article  Google Scholar 

  40. Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77(264), 2141–2153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Markowich, P.A., Pietra, P., Pohl, C.: Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit. Numer. Math. 81(4), 595–630 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Martino, S.D., Falanga, M., Godano, C., Lauro, G.: Logarithmic Schrödinger-like equation as a model for magma transport. Europhys. Lett. 63, 472–475 (2003)

    Article  Google Scholar 

  43. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numerica 11, 341–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Robinson, M., Fairweather, G., Herbst, B.: On the numerical solution of the cubic Schrödinger equation in one space variable. J. Comput. Phys. 104(1), 277–284 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Squassina, M., Szulkin, A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Eq. 54(1), 585–597 (2015)

    Article  MATH  Google Scholar 

  46. Taha, T.R., Ablowitz, M.I.: Analytical and numerical aspects of certain nonlinear evolution equations II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55(2), 203–230 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tanaka, K., Zhang, C.: Multi-bump solutions for logarithmic Schrödinger equations. Calc. Var. Partial Differ. Eq. 56(2), 33 (2017)

    Article  MATH  Google Scholar 

  48. Thalhammer, M., Caliari, M., Neuhauser, C.: High-order time-splitting Hermite and Fourier spectral methods. J. Comput. Phys. 228(3), 822–832 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yasue, K.: Quantum mechanics of nonconservative systems. Ann. Phys. 114(1–2), 479–496 (1978)

    Article  Google Scholar 

  50. Zhu, Y.: Implicit difference schemes for the generalized non-linear Schrödinger system. J. Comput. Math. 1, 116–129 (1983)

    MATH  Google Scholar 

  51. Zloshchastiev, K.G.: Logarithmic nonlinearity in theories of quantum gravity: origin of time and observational consequences. Grav. Cosmol. 16, 288–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Ministry of Education of Singapore Grant R-146-000-223-112 (MOE2015-T2-2-146) (W. Bao) and by the Fundamental Research Funds for the Central Universities (YJ201807) (Q. Tang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, W., Carles, R., Su, C. et al. Regularized numerical methods for the logarithmic Schrödinger equation. Numer. Math. 143, 461–487 (2019). https://doi.org/10.1007/s00211-019-01058-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01058-2

Mathematics Subject Classification

Navigation