Skip to main content
Log in

Concerted evolution of members of the multisequence family chAB4 located on various nonhomologous chromosomes

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

During the last years it became obvious that a lot of families of long-range repetitive DNA elements are located within the genomes of mammals. The principles underlying the evolution of such families, therefore, may have a greater impact than anticipated on the evolution of the mammalian genome as a whole. One of these families, called chAB4, is represented with about 50 copies within the human and the chimpanzee genomes and with only a few copies in the genomes of gorilla, orang-utan, and gibbon. Members of chAB4 are located on 10 different human chromosomes. FISH of chAB4-specific probes to chromosome preparations of the great apes showed that chAB4 is located, with only one exception, at orthologous places in the human and the chimpanzee genome. About half the copies in the human genome belong to two species-specific subfamilies that evolved after the divergence of the human and the chimpanzee lineages. The analysis of chAB4-specific PCR-products derived from DNA of rodent/human cell hybrids showed that members of the two human-specific subfamilies can be found on 9 of the 10 chAB4-carrying chromosomes. Taken together, these results demonstrate that the members of DNA sequence families can evolve as a unit despite their location at multiple sites on different chromosomes. The concerted evolution of the family members is a result of frequent exchanges of DNA sequences between copies located on different chromosomes. Interchromosomal exchanges apparently take place without greater alterations in chromosome structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti A., Rainaldi G, Lobbiani A, Magnani I, Di Lernia R, Meneveri R, Siccardi AG, Ginelli E (1987) Chromosomal location by in situ hybridization of the human Sau3A family of DNA repeats. Hum Genet 75, 326–332

    Article  PubMed  CAS  Google Scholar 

  • Assum G, Fink T, Klett C, Lengl B, Schanbacher M, Uhl S, Wöhr G (1991) A new multisequence family in human. Genomics 11, 397–409

    Article  PubMed  CAS  Google Scholar 

  • Assum G, Fink T, Steinbeißer T, Fisel KJ (1993) Analysis of human extrachromosomal DNA-elements originating from different β-satellite subfamilies. Hum Genet 91, 489–495

    Article  PubMed  CAS  Google Scholar 

  • Assum G, Gartmann C, Schempp W, Wöhr G (1994) Evolution of the chAB4 multisequence family in primates. Genomics 21, 34–41

    Article  PubMed  CAS  Google Scholar 

  • Chance PF, Abbas N, Lensch MW, Pentao L, Roa BB, Patel PI, Lupski JR (1994) Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum Mol Genet 3, 223–228

    Article  PubMed  CAS  Google Scholar 

  • Cooper KF, Fisher RB, Tyler-Smith C (1992) Structure of the pericentric long arm region of the human Y chromosome. J Mol Biol 228, 421–432

    Article  PubMed  CAS  Google Scholar 

  • Drwinga HL, Toji LH, Kim CH, Greene AE, Mulivor RA (1993) NIGMS human/rodent somatic cell hybrid mapping panels 1 and 2. Genomics 16, 311–314

    Article  PubMed  CAS  Google Scholar 

  • Eichler EE, Lu F, Shen Y, Antonacci R, Jurecic V, Doggett NA, Moyzis RK, Baldini A, Gibbs RA, Nelson DL (1996) Duplication of a gene-rich cluster between 16p1 l.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum Mol Genet 5, 899–912

    Article  PubMed  CAS  Google Scholar 

  • Eichler EE, Budarf ML, Rocchi M, Deaven LL, Doggett NA, Baldini A, Nelson DL, Mohrenweiser HW (1997) Interchromosomal duplications of the adrenoleukodystrophy locus: a phenomenon of pericentromeric plasticity. Hum Mol Genet 6, 991–1002

    Article  PubMed  CAS  Google Scholar 

  • Eickenboom JCJ, Vink T, Briet E, Sixma JJ, Reitsma PH (1994) Multiple substitution in the von Willebrand factor gene that mimic the pseudogene sequence. Proc Natl Acad Sci USA 91, 2221–2224

    Article  Google Scholar 

  • Frommer M, Paul C, Vincent PC (1988) Localisation of satellite DNA sequences on human chromosomes using bromodeoxyuridine-labeled probes. Chromosoma 97, 11–18

    Article  PubMed  CAS  Google Scholar 

  • Grady DL, Ratliff RL, Robinson DL, McCanlies EC, Meyne J, Moyzis RK (1992) Highly conserved repetitive DNA sequences are present at human centromeres. Proc Natl Acad Sci USA 89, 1695–1699

    Article  PubMed  CAS  Google Scholar 

  • Greig GM, Willard HE (1992) β satellite DNA: characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes. Genomics 12, 573–580

    Article  PubMed  CAS  Google Scholar 

  • Groot PC, Mager WH, Henriquez NZ, Pronk JG, Arwert F, Planta RJ, Eriksson AW, Frants RR (1990) Evolution of the human α-amylase multigene family through unequal, homologous, and inter- and intrachromosomal crossovers. Genomics 8, 97–105

    Article  PubMed  CAS  Google Scholar 

  • Hayashida H, Kuma K, Miyata T (1992) Interchromosomal gene conversion as a possible mechanism for explaining divergence patterns of ZFY-related genes. J Mol Evol 35, 181–183

    Article  PubMed  CAS  Google Scholar 

  • Krystal M, D’Eustachio P, Ruddle FH, Arnheim N (1981) Human nucleolus organizers on non-homologous chromosomes can share the same ribosomal gene variants. Proc Natl Acad Sci USA 78, 5744–5748

    Article  PubMed  CAS  Google Scholar 

  • Kurnit DM, Neve RL, Morton CC, Bruns GAD, Ma NSF, Cox DR, Klinger HP (1984) Recent evolution of DNA-sequence homology in the pericentromeric regions of human acrocentric chromosomes. Cytogenet Cell Genet 38, 99–105

    Article  PubMed  CAS  Google Scholar 

  • Maeda N, Smithies O (1986) The evolution of multigene families: Human haptoglobin genes. Annu Rev Genet 20, 81–108

    Article  PubMed  CAS  Google Scholar 

  • Meyne J, Goodwin EH, Moyzis RK (1994) Chromosome localization and orientation of the simple sequence repeat of human satellite I DNA. Chromosoma 103, 99–103

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto MM, Slightom JL, Goodmann M (1987) Phylogenetic relations of human and African apes from DNA sequences in the ψ, η-globin region Science 238, 369–373

    Article  PubMed  CAS  Google Scholar 

  • Patracchini P, Marchetti G, Aiello V, Croci G, Calzdari E, Bernardi F (1992) Characterization and mapping of the 5′ portion of von Willebrand factor pseudogene. Hum Genet 90, 297–298

    Article  PubMed  CAS  Google Scholar 

  • Pentao L, Wise CA, Chinault AC, Patel PI, Lupski JR (1992) Charcot-Marie-Tooth type 1A tandem duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit. Nature Genet 2, 292–300

    Article  PubMed  CAS  Google Scholar 

  • Purandare SM, Huntsman Breidenbach H, Li Y, Zhu XL, Sawada S, Neil SM, Brothman A, White R, Cawthon R, Viskochil D (1995) Identification of neurofibromatosis 1 (NF1) homologous loci by direct sequencing, fluorescence in situ hybridization, and PCR amplification of somatic cell hybrids. Genomics 30, 476–485

    Article  PubMed  CAS  Google Scholar 

  • Régnier V, Meddeb M, Lecointre G, Richard F, Duverger A, Nguyen VC, Dutrillaux B, Bernheim A, Danglot G (1997) Emergence and scattering of multiple neurofibromatosis (NF1)-related sequences during hominoid evolution suggest a process of pericentromeric interchromosomal transposition. Hum Mol Genet 6, 9–16

    Article  PubMed  Google Scholar 

  • Sakai KS, Ohta T, Minoshima S, Kudoh J, Wang Y, De Jona PJ, Shimizu N (1995) Human ribosomal RNA gene cluster: identification of the proximal end containing a novel tandem repeat sequence. Genomics 26, 521–526

    Article  PubMed  CAS  Google Scholar 

  • Schempp W, Binkele A, Arnemann J, Gläser B, Ma K, Taylor K, Toder R, Wolfe J, Zeitler S, Chandley AC (1995) Comparative mapping of YRRM- and TSPY-related cosmids in man and hominoid apes. Chromosome Res 3, 227–234

    Article  PubMed  CAS  Google Scholar 

  • Sibley CG, Ahlquist JE (1987) DNA hybridization evidence of hominoid phylogeny: results from an expanded data set. J Mol Evol 26, 99–121

    Article  PubMed  CAS  Google Scholar 

  • Tagarro I, Fernández-Peralta AM, González-Aguilera JJ (1994) Chromosomal localization of human satellites 2 and 3 by a FISH method using oligonucleotides as probes. Hum Genet 93, 383–388

    PubMed  CAS  Google Scholar 

  • van Deutekom JCT, Lemmers RJLF, Grewal PK, Van Geel M, Romberg S, Dauwerse HG, Wright TJ, Padberg GW, Hofker MH, Hewitt JE, Frants RR (1996) Identification of the first gene (FRG1) from the FSHD region on human chromosome 4q35. Hum Mol Genet 5, 581–590

    Article  PubMed  Google Scholar 

  • Waye JS, Willard HF (1989) Human β satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc Natl Acad Sci USA 86, 6250–6254

    Article  PubMed  CAS  Google Scholar 

  • Weiner AM, Denison RA (1983) Either gene amplification or gene conversion may maintain the homogeneity of the multigene family encoding human U1 small nuclear RNA. Cold Spring Harbor Symp Quant Biol 47, 1141–1149

    PubMed  Google Scholar 

  • Wöhr G, Fink T, Assum G (1996) A palindromic structure in the pericentromeric region of various human chromosomes. Genome Res 6, 267–279

    Article  PubMed  Google Scholar 

  • Worton RS, Sutherland J, Sylvester JE, Willard HF, Bodrug S, Dube L, Dutt C, Kean V, Ray PN, Schmickel R (1988) Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5′ end. Science 239, 64–68

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215, 1525–1530

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assum, G., Pasantes, J., Gläser, B. et al. Concerted evolution of members of the multisequence family chAB4 located on various nonhomologous chromosomes. Mammalian Genome 9, 58–63 (1998). https://doi.org/10.1007/s003359900680

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900680

Keywords

Navigation