Skip to main content

Advertisement

Log in

Woody plant phylogenetic diversity mediates bottom–up control of arthropod biomass in species-rich forests

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom–up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top–down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baraloto C et al (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. J Ecol 100:690–701

    Article  Google Scholar 

  • Baruffol M et al (2013) Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE 8:e81246

    Article  Google Scholar 

  • Bernays EA, Bright KL, Gonzalez N, Angel J (1994) Dietary mixing in a generalist herbivore: tests of two hypotheses. Ecology 75:1997–2006

    Article  Google Scholar 

  • Borer ET, Seabloom EW, Tilman D (2012) Plant diversity controls arthropod biomass and temporal stability. Ecol Lett 15:1457–1464

    Article  PubMed  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540

    Article  Google Scholar 

  • Bruelheide H et al (2011) Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol Monogr 81:25–41

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Book  Google Scholar 

  • Campos RI, Vasconcelos HL, Ribeiro SP, Neves FS, Soares JP (2006) Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography 29:442–450

    Article  Google Scholar 

  • Cardinale BJ et al (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592

    Article  PubMed  Google Scholar 

  • Cardinale BJ et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Carmona D, Fornoni J (2013) Herbivores can select for mixed defensive strategies in plants. New Phytol 197:576–585

    Article  PubMed  Google Scholar 

  • Castagneyrol B, Jactel H (2012) Unraveling plant–animal diversity relationships: a meta-regression analysis. Ecology 93:2115–2124

    Article  PubMed  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Dinnage R (2013) Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory. PeerJ 1:e93

    Article  PubMed Central  PubMed  Google Scholar 

  • Dinnage R, Cadotte MW, Haddad NM, Crutsinger GM, Tilman D (2012) Diversity of plant evolutionary lineages promotes arthropod diversity. Ecol Lett 15:1308–1317

    Article  PubMed  Google Scholar 

  • Dyer LA et al (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696–699

    Article  CAS  PubMed  Google Scholar 

  • Dyer LA, Letourneau DK, Chavarria GV, Amoretti DS (2010) Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. Ecology 91:3707–3718

    Article  PubMed  Google Scholar 

  • Eichenberg D, Ristok C, Kröber W, Bruelheide H (2014) Plant polyphenols––implications of different sampling, storage and sample processing in biodiversity–ecosystem functioning experiments. Chem Ecol. doi:10.1080/02757540.2014.894987

    Google Scholar 

  • Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci USA 106:18054–18061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geißler C, Kühn P, Böhnke M, Bruelheide H, Shi X, Scholten T (2012) Splash erosion potential under tree canopies in subtropical SE China. Catena 91:85–93

    Article  Google Scholar 

  • Gotelli NJ, Rohde K (2002) Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecol Lett 5:86–94

    Article  Google Scholar 

  • Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039

    Article  PubMed  Google Scholar 

  • Hardy OJ (2008) Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. J Ecol 96:914–926

    Article  Google Scholar 

  • Hódar JA (1996) The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecol 17:421–433

    Google Scholar 

  • Hooper DU et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Yu M (2008) Study on successions sequence of evergreen broad-leaved forest in Gutian Mountain of Zhejiang, Eastern China: species diversity. Front Biol China 3:45–49

    Article  Google Scholar 

  • Kembel SW et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Koricheva J, Mulder CPH, Schmid B, Joshi J, Huss-Danell K (2000) Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia 125:271–282

    Article  CAS  PubMed  Google Scholar 

  • Legendre P et al (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674

    Article  PubMed  Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118

    Article  Google Scholar 

  • Nadrowski K, Wirth C, Scherer-Lorenzen M (2010) Is forest diversity driving ecosystem functioning and service? Curr Opin Envir Sus 2:75–79

    Article  Google Scholar 

  • Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406

    Article  CAS  PubMed  Google Scholar 

  • Novotny V et al (2010) Guild-specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203

    Article  PubMed  Google Scholar 

  • Novotny V et al (2012) Insects on plants: explaining the paradox of low diversity within specialist herbivore guilds. Am Nat 179:351–362

    Article  PubMed  Google Scholar 

  • Ødegaard F, Diserud OH, Østbye K (2005) The importance of plant relatedness for host utilization among phytophagous insects. Ecol Lett 8:612–617

    Article  Google Scholar 

  • Paine CET et al (2012) Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest. Ecol Lett 15:34–41

    Article  PubMed  Google Scholar 

  • Parker JD, Burkepile DE, Lajeunesse MJ, Lind EM (2012) Phylogenetic isolation increases plant success despite increasing susceptibility to generalist herbivores. Divers Distrib 18:1–9

    Article  Google Scholar 

  • Pellissier L et al (2013) Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients. Ecol Lett 16:600–608

    Article  PubMed  Google Scholar 

  • Perner J et al (2005) Effects of plant diversity, plant productivity and habitat parameters on arthropod abundance in montane European grasslands. Ecography 28:429–442

    Article  Google Scholar 

  • Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-117. Available at http://CRAN.R-project.org/package=nlme. Last accessed 26 May 2014

  • Plath M, Dorn S, Riedel J, Barrios H, Mody K (2012) Associational resistance and associational susceptibility: specialist herbivores show contrasting responses to tree stand diversification. Oecologia 169:477–487

    Article  PubMed  Google Scholar 

  • Reiss J, Bailey RA, Perkins DM, Pluchinotta A, Woodward G (2011) Testing effects of consumer richness, evenness and body size on ecosystem functioning. J Anim Ecol 80:1145–1154

    Article  PubMed  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Rudolf VHW (2012) Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator–prey systems. J Anim Ecol 81:524–532

    Article  PubMed  Google Scholar 

  • Rzanny M, Kuu A, Voigt W (2013) bottom–up and top–down forces structuring consumer communities in an experimental grassland. Oikos 122:967–976

    Article  Google Scholar 

  • Saint-Germain M et al (2007) Should biomass be considered more frequently as a currency in terrestrial arthropod community analyses? J Appl Ecol 44:330–339

    Article  Google Scholar 

  • Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2009) Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst 40:245–269

    Article  Google Scholar 

  • Scherber C et al (2010) bottom–up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556

    Article  CAS  PubMed  Google Scholar 

  • Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 80:469–484

    Article  Google Scholar 

  • Schuldt A et al (2010) Tree diversity promotes insect herbivory in subtropical forests of south-east China. J Ecol 98:917–926

    Article  PubMed Central  PubMed  Google Scholar 

  • Schuldt A et al (2012) Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests. Ecol Lett 15:732–739

    Article  PubMed  Google Scholar 

  • Schuldt A et al (2014a) Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytol 202:864–873

    Article  PubMed Central  PubMed  Google Scholar 

  • Schuldt A, Bruelheide H, Durka W, Michalski SG, Purschke O, Assmann T (2014b) Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages. Oecologia 174:533–543

    Article  PubMed  Google Scholar 

  • Sobek S, Scherber C, Steffan-Dewenter I, Tscharntke T (2009a) Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest. Oecologia 160:279–288

    Article  PubMed Central  PubMed  Google Scholar 

  • Sobek S, Steffan-Dewenter I, Scherber C, Tscharntke T (2009b) Spatiotemporal changes of beetle communities across a tree diversity gradient. Divers Dstrib 15:660–670

    Article  Google Scholar 

  • Srivastava DS, Lawton JH (1998) Why more productive sites have more species: An experimental test of theory using tree-hole communities. Am Nat 152:510–529

    Article  CAS  PubMed  Google Scholar 

  • Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15:637–648

    Article  PubMed  Google Scholar 

  • Srivastava DS, Vellend M (2005) Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–294

    Article  Google Scholar 

  • Strutzenberger P, Brehm G, Fiedler K (2011) DNA barcoding-based species delimitation increases species count of Eois (Geometridae) moths in a well-studied tropical mountain forest by up to 50%. Insect Sci 18:349–362

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terborgh J (2012) Enemies maintain hyperdiverse tropical forests. Am Nat 179:303–314

    Article  PubMed  Google Scholar 

  • Thebault E, Huber V, Loreau M (2007) Cascading extinctions and ecosystem functioning: contrasting effects of diversity depending on food web structure. Oikos 116:163–173

    Article  Google Scholar 

  • Unsicker SB, Baer N, Kahmen A, Wagner M, Buchmann N, Weisser WW (2006) Invertebrate herbivory along a gradient of plant species diversity in extensively managed grasslands. Oecologia 150:233–246

    Article  PubMed  Google Scholar 

  • Vehviläinen H, Koricheva J, Ruohomaki K (2007) Tree species diversity influences herbivore abundance and damage: meta-analysis of long-term forest experiments. Oecologia 152:287–298

    Article  PubMed  Google Scholar 

  • Vehviläinen H, Koricheva J, Ruohomaki K (2008) Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos 117:935–943

    Article  Google Scholar 

  • Wardhaugh CW (2013) Estimation of biomass from body length and width for tropical rainforest canopy invertebrates. Aust J Entomol 52:291–298

    Article  Google Scholar 

  • Wardhaugh CW, Stork NE, Edwards W (2012) Feeding guild structure of beetles on Australian tropical rainforest trees reflects microhabitat resource availability. J Anim Ecol 81:1086–1094

    Article  PubMed  Google Scholar 

  • Weiblen GD, Webb CO, Novotny V, Basset Y, Miller SE (2006) Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87:S62–S75

    Article  PubMed  Google Scholar 

  • Whitfeld TJS, Novotny V, Miller SE, Hrcek J, Klimes P, Weiblen GD (2012) Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology 93:S211–S222

    Article  Google Scholar 

  • Zhang Y, Adams J (2011) top–down control of herbivores varies with ecosystem types. J Ecol 99:370–372

    Google Scholar 

  • Zvereva E, Lanta V, Kozlov M (2010) Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia 163:949–960

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the administration of the Gutianshan National Nature Reserve and members of the BEF China consortium for support, Stefan Michalski and Walter Durka for providing woody plant phylogenetic data, and Daria Golub, Merle Noack, and Friederike Rorig for help with arthropod sampling. Comments of two anonymous reviewers greatly helped to improve the manuscript. We gratefully acknowledge funding by the German Research Foundation (DFG FOR 891/1 and 891/2),the Sino-German Centre for Research Promotion in Beijing (GZ 524, 592, 698, 699, 785, and 1,020), and the National Science Foundation of China (NSFC 30710103907 and 30930005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schuldt.

Additional information

Communicated by Nina Farwig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuldt, A., Baruffol, M., Bruelheide, H. et al. Woody plant phylogenetic diversity mediates bottom–up control of arthropod biomass in species-rich forests. Oecologia 176, 171–182 (2014). https://doi.org/10.1007/s00442-014-3006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3006-7

Keywords

Navigation