Skip to main content

Advertisement

Log in

Evidence for a uniformly small isotope effect of nitrogen leaching loss: results from disturbed ecosystems in seasonally dry climates

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Nitrogen (N) losses constrain rates of plant carbon dioxide (CO2) uptake and storage in many ecosystems globally. N isotope models have been used to infer that ~30 % of terrestrial N losses occur via microbial denitrification; however, this approach assumes a small isotope effect associated with N leaching losses. Past work across tropical/sub-tropical forest sites has confirmed this expectation; however, the stable N isotope ratio (δ15N) of ecosystem leaching has yet to be systematically evaluated in seasonally dry climates or across major ecosystem disturbances. We here present new measurements of the δ15N of total dissolved N (TDN) in small streams, bulk deposition, and soil pools across eight watershed sites in California, including grassland, chaparral, and coastal redwood forest ecosystems, with and without fire, grazing, and forest harvesting. Regardless of the dominant vegetation type or disturbance regime, average δ15N of TDN in stream water differed only slightly (<~1 ‰) from that of bulk soil δ15N, revealing a uniformly small isotope effect associated with N leaching losses even under non-steady state conditions. Rather, lower input δ15N compared to TDN δ15N in streams pointed to fractionations via gaseous loss pathways as the dominant mechanism behind soil δ15N enrichment. We conclude that N leaching does not impart a major isotope effect across a broad range of ecosystems and conditions examined, thereby advancing the N gas-loss hypothesis as the principal explanation for variation in bulk soil δ15N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17(1):1–5. doi:10.1029/2002GB001903

    Article  Google Scholar 

  • Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261–299. doi:10.1146/annurev.energy.29.062403.102142

    Article  Google Scholar 

  • Bai E, Houlton BZ, Wang YP (2012) Isotopic identification of nitrogen hotspots across natural terrestrial ecosystems. Biogeosciences 9:3287–3304. doi:10.5194/bg-9-3287-2012

    Article  CAS  Google Scholar 

  • Cafferata P, Reid L (2013) Applications of long-term watershed research to forest management in California: 50 years of learning from the Caspar Creek watershed study. California forestry report

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Florida

    Google Scholar 

  • Coetsee C, Stock WD, Craine JM (2010) Do grazers alter nitrogen dynamics on grazing lawns in a South African savannah? Afr J Ecol 49:62–69

    Article  Google Scholar 

  • Cook GD (2001) Effects of frequent fires and grazing on stable nitrogen isotope ratios of vegetation in northern Australia. Aust Ecol 26:630–636. doi:10.1046/j.1442-9993.2001.01150.x

    Article  Google Scholar 

  • Dahlgren RA (1998a) Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed. USDA For Serv Gen Tech Rep 168:45–53

    Google Scholar 

  • Dahlgren RA (1998b) Effects of forest harvest on biogeochemical processes in the caspar creek watershed. pp 1–110

  • Dahlgren RA, Singer MJ, Huang X (1997) Oak tree and grazing impacts on soil properties and nutrients in a California oak woodland. Biogeochemistry 39:45–64

    Article  CAS  Google Scholar 

  • Dahlgren RA, Horwath WR, Tate KW, Camping TJ (2003) Blue oak enhance soil quality in California oak woodlands. Calif Agric 57(2):42–47

    Article  Google Scholar 

  • Davidson E, Seitzinger S (2006) The enigma of progress in denitrification research. Ecol Appl 16:2057–2063

    Article  PubMed  Google Scholar 

  • Doane TA, Horwath WR (2003) Spectrophotometric determination of nitrate with a single reagent. Anal Lett 36:2713–2722. doi:10.1081/AL-120024647

    Article  CAS  Google Scholar 

  • Fawcett SE, Lomas MW, Casey JR, Ward BB, Sigman DM (2011) Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea. Nat Geosci 4:717–722. doi:10.1038/ngeo1265

    Article  CAS  Google Scholar 

  • Forster J (1995) Soil nitrogen. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, San Diego, pp 79–87

    Google Scholar 

  • Frank D, Evans R (1997) Effects of native grazers on grassland N cycling in yellowstone national park. Ecology 78:2238–2248

    Article  Google Scholar 

  • Frank D, Groffman P, Evans R, Tracy B (2000) Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands. Oecologia 123:116–121

    Article  Google Scholar 

  • Frank D, Evans R, Tracy B (2004) The role of ammonia volatilization in controlling the natural 15N abundance of a grazed grassland. Biogeochemistry 68:169–178

    Article  CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Grogan P, Burns TD, Chapin FS III (2000) Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122(4):537–544

    Article  Google Scholar 

  • Hastings MG, Jarvis JC, Steig EJ (2009) Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. Science 324:1288

    Article  CAS  PubMed  Google Scholar 

  • Högberg P (1990) Forests losing large quantities of nitrogen have elevated 15N: 14N ratios. Oecologia 84:229–231

    Article  Google Scholar 

  • Högberg P (1997) Tansley review no. 95 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Holloway JM, Dahlgren RA (2001) Seasonal and event-scale variations in solute chemistry for four Sierra Nevada catchments. J Hydrol 250:106–121. doi:10.1016/S0022-1694(01)00424-3

    Article  CAS  Google Scholar 

  • Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJ, Bunting L, Chen G, Finney BP, Gregory-Eaves I, Holmgren S, Lisac MJ, Lisi PJ, Nydick K, Rogers LA, Saros JE, Selbie DT, Shapley MD, Walsh PD, Wolfe AP (2011) A coherent signature of antropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334:1545–1548

    Article  CAS  PubMed  Google Scholar 

  • Houlton BZ, Bai E (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc Natl Acad Sci 106:21713–21716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houlton BZ, Morford SL (2015) A new synthesis for terrestrial nitrogen inputs. Soil 1(1):381–397

    Article  Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci 103:8745–8750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EA, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci 104:8902–8906. doi:10.1073/pnas.0609935104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houlton BZ, Marklein AR, Bai E (2015) Improving nitrogen in climate change forecasts. Nat Clim Change 5:398–401

    Article  Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. Elsevier, Amsterdam

    Book  Google Scholar 

  • Keppeler E (2007) Effects of timber harvest on fog drip and streamflow, caspar creek experimental watersheds, Mendocino county, California. USDA For Serv Gen Tech Rep, pp 85–93

  • Knapp AN, Sigman DM, Lipschultz F (2005) N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic time-series study site. Glob Biogeochem Cycles 19:1–15. doi:10.1029/2004GB002320

    Article  Google Scholar 

  • Knapp AN, Hastings MG, Sigman DM, Lipschultz F, Galloway JN (2010) The flux and isotopic composition of reduced and total nitrogen in Bermuda rain. Mar Chem 120:83–89. doi:10.1016/j.marchem.2008.08.007

    Article  CAS  Google Scholar 

  • Koba K, Fang Y, Mo J, Zhang W, Lu X, Liu Leim Zhang T, Takebayashi Y, Toyoda S, Yoshida N, Suzuki K, Yoh M, Senoo K (2012) The 15N natural abundance of the N lost from an N-saturated subtropical forest in southern China. J Geophys Res Biogeosci 117:1–13. doi:10.1029/2010JG001615

    Article  Google Scholar 

  • Lal R (2004) Carbon sequestration in dryland ecosystems. Environ Manage 33:528–544. doi:10.1007/s00267-003-9110-9

    Article  PubMed  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Lewis DJ, Singer MJ, Dahlgren RA, Tate KW (2006) Nitrate and sediment fluxes from a California rangeland watershed. J Environ Qual 35:2202–2211. doi:10.2134/jeq2006.0042

    Article  CAS  PubMed  Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 430:413–430

    Article  Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder KK (1999) Nitrogen stable isotopic composition of leaves and soil: tropical vs. temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • Martinsen V, Austrheim G, Mysterud A, Mulder J (2011) Effects of herbivory on N-cycling and distribution of added 15NH4 + in N-limited low-alpine grasslands. Plant Soil 347:279–292. doi:10.1007/s11104-011-0847-2

    Article  CAS  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol Chem/Offic J Nitric Oxide Soc 5:62–71. doi:10.1006/niox.2000.0319

    Article  CAS  Google Scholar 

  • Pardo LH, Hemond HF, Montoya JP, Fahey TJ, Siccama TGs (2002) Response of the natural abundance of 15N in forest soils and foliage to high nitrate loss following clear-cutting. Can J For Res 1136:1126–1136. doi:10.1139/X02-041

    Article  Google Scholar 

  • Perakis SS, Sinkhorn ER, Compton JE (2011) δ15N constraints on long-term nitrogen balances in temperate forests. Oecologia 167:793–807. doi:10.1007/s00442-011-2016-y

    Article  PubMed  Google Scholar 

  • Perakis SS, Tepley AJ, Compton JE (2015) Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession. Ecosystems 18:573–588

    Article  CAS  Google Scholar 

  • Raison RJ (1979) Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51:73–108. doi:10.1007/BF02205929

    Article  CAS  Google Scholar 

  • Rice RM, Tilley FB, Datzman PA (1979) A watershed’s response to logging and roads: South Fork of Caspar Creek, California, 1967–1976. Research paper PSW-RP-146. US department of agriculture, forest service, pacific southwest forest and range experiment station. Berkeley, CA, p 12

    Google Scholar 

  • Ruess R, McNaughton S (1987) Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos 49:101–110

    Article  Google Scholar 

  • Saito L, Miller WW, Johnson DW, Qualls RG, Provencher L, Carroll E, Szameitat P (2007) Fire effects on stable isotopes in a Sierran forested watershed. J Environ Qual 36:91–100. doi:10.2134/jeq2006.0233

    Article  CAS  PubMed  Google Scholar 

  • Shearer G, Kohl D (1986) N2 fixation in field settings: estimations based on natural 15N abundance. Funct Plant Biol 13(6):699–756

    CAS  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bohlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  CAS  PubMed  Google Scholar 

  • Tate KW, Dahlgren RA, Singer MJ, Allen-Diaz B, Atwill ER (1999) Timing, frequency of sampling affect accuracy of water-quality monitoring. Calif Agric 53:44–48

    Article  Google Scholar 

  • Verdouw H, Echteld C, Dekkers EM (1977) Ammonia determination based on indophenol formation with sodium salicylate. Water Res 12:399–402

    Article  Google Scholar 

  • Vitousek PM, Hobbe SE (2000) The control of heterotrophic nitrogen fixation in decomposing litter. Ecology 81:2366–2376

    Article  Google Scholar 

  • Vitousek P, Howarth R (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Biol Sci 368(1621):20130119

    Article  Google Scholar 

  • Wellman R, Cook F, Krouse H (1968) Nitrogen-15: microbiological alteration of abundance. Science 161:269–270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NSF grant DEB‐1150246. Special thanks to Erin Lennon for collaboration, Angie Munguia and Caprice Lee for lab assistance, and to Joy Cookingham, Katy Dynarski, Alison Marklein, and Corey Lawrence for their comments on earlier versions of the manuscript. Thanks to the staff at our research sites for assistance with sampling.

Author contribution statement

B. Z. H. originally proposed the overarching idea; B. Z. H. and M. E. M. further developed the work once the systems had been explored; M. E. M. and B. Z. H. conducted the fieldwork and sample collection; M. E. M. conducted the sample analysis/lab work; M. E. M. analyzed the data; and M. E. M. and B. Z. H. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meagan E. Mnich.

Additional information

Communicated by Hormoz BassiriRad.

Electronic supplementary material

Below is the link to the electronic supplementary material

Supplementary material 1 (PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnich, M.E., Houlton, B.Z. Evidence for a uniformly small isotope effect of nitrogen leaching loss: results from disturbed ecosystems in seasonally dry climates. Oecologia 181, 323–333 (2016). https://doi.org/10.1007/s00442-015-3433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3433-0

Keywords

Navigation