Skip to main content
Log in

CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The temperature and light responses of CO2 uptake (Fn) in the sedge Carex curvula were investigated in situ by IRGA technic in the Austrian Central Alps at an altitude of 2,310 m. Fn in Carex leaves reaches a maximum of 15.6 mg CO2 dm-2 h-1 at a leaf temperature of 22.5°C and a quantum flux density larger than 1.0 mmol photons m-2 s-1 (400–700 nm). A model based on a polynomal regression analysis of the Fn responses and informations about the microclimate and the canopy structure was used to simulate F n for individual days and for a whole season. It turned out that the major rate limiting factor is the availability of light in the canopy: The calculated photosynthetic yield for a hypothetical optimum season of clear days with fully illuminated leaves and optimum temperature as well as for a typical season with the actual light and temperature conditions in the canopy, shows that insufficient illumination of the leaves accounts for almost 40% reduction of the possible CO2 uptake while suboptimal temperatures cause only a loss of 8%. Half of the light deficit is caused by mutual shading of the leaves. The minor importance of temperature for the annual CO2 uptake results from the fact that temperature adaptation of F n in this sedge allows optimal utilization of short periods with high light intensity and hence high photosynthetic yield. The weaker the quantum supply the more becomes temperature limiting. This indicates that the length of the growing season is probably less important for the success of this prominent alpine plant than the sum of hours with high radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

I o :

quantum flux density in a horizontal plane above the plant canopy (μmol photons m-2 s-1, 400–700 nm)

I z :

as I o, but at level z in the leaf canopy

I 1 :

quantum flux density received by a leaf at level z and with leaf inclination γ (for diffuse light I z=I 1)

β:

solar elevation angle (°)

γ:

leaf angle to the vertical (°)

κ:

extinction coefficient

LAI:

leaf area index

T 1 :

leaf temperature (°C)

F n :

rate of net photosynthesis (CO2 uptake; mg CO2 g dry weight-1 h-1, or mg CO2 dm-2 h-1, projected leaf area)

R d :

rate of dark respiration (mg CO2 g-1 h-1)

References

  • Arnon D (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Google Scholar 

  • Billings WD, Clebsch EEC, Mooney HA (1961) Effect of low concentration of carbon dioxide on photosynthesis rates of two races of Oxyria. Science 133:1834

    Google Scholar 

  • Billings WD, Clebsch EEC, Mooney HA (1966) Photosynthesis and respiration rates of Rocky Mountain alpine plants under field conditions. Am Midl Nat 75:34–44

    Google Scholar 

  • Cartellieri E (1940) Über Transpiration und Kohlensäureassimilation an einem hochalpinen Standort. Sitzungsber Akad Wiss Wien, Math-naturw Kl Abt 1, 149:95–143

    Google Scholar 

  • Cernusca A (1976) Bestandesstruktur, Bioklima und Energiehaushalt von alpinen Zwergstrauchbeständen. Oecol Plant 11:71–102

    Google Scholar 

  • Cernusca A (1977) Bestandesstruktur, Mikroklima, Bestandesklima und Energiehaushalt von Pflanzenbeständen des alpinen Grasheidegürtels in den Hohen Tauern. Erste Ergebnisse der Projektstudie 1976. In: A Cernusca (ed). Veröff Österr MaB-Hochgebirgsprogramm Hohe Tauern 1, Alpine Grasheide Hohe Tauern. Universitätsverlag Wagner, Innsbruck p 25–45

    Google Scholar 

  • Cernusca A, Decker P (1977) Respiratorischer Kohlenstoffverbrauch im alpinen Grasheidegürtel der Hohen Tauern. Oecol Plant p 123–131

  • Decker P (1981) Respiratorischer Kohlenstoffverbrauch verschiedener Pflanzenbestände in den Alpen. Thesis, Innsbruck

  • Dirmhirn I (1964ed) Das Strahlungsfeld im Lebensraum. Akademische Verlagsgesellschaft, Frankfurt

    Google Scholar 

  • Frank AB, Barker RE (1976) Rates of photosynthesis and transpiration and diffusive resistance of six grasses grown under controlled conditions. Agron J 68:487–490

    Google Scholar 

  • Gloser J (1976) Photosynthesis and respiration of some alluvial meadow grasses: Responses to irradiance, temperature and CO2 concentration. Acta Sc Nat Brno 10(2)

  • Grabherr G (1977) Der CO2-Gaswechsel des immergrünen Zwergstrauches Loiseleuria procumbens (L) Desv in Abhängigkeit von Strahlung Temperature, Wasserstreß und phänologischem Zustand. Photosynthetica 11:302–310

    Google Scholar 

  • Grabherr G, Cernusca A (1977) Influence of radiation, wind and temperature on CO2 gas exchange of the alpine dwarf shrub community Loiseleurietum cetrariosum. Photosynthetica 11:22–28

    Google Scholar 

  • Grace J, Thompson JR (1973) The after-effect of wind on photosynthesis and transpiration of Festuca arundinacea. Physiol Plant 28:541–547

    Google Scholar 

  • Johnson DA, Caldwell MM (1975) Gas exchange of four arctic and alpine tundra plant species in relation to atmospheric and soil moisture stress. Oecologia 21:93–108

    Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Trans R Soc London B 273:593–610

    Google Scholar 

  • Körner Ch (1977a) Evapotranspiration und Transpiration verschiedener Pflanzenbestände im alpinen Grasheidegürtel der Hohen Tauern. In: A Cernusca (ed), Veröff Österr MaB-Hochgebirgsprogramm Hohe Tauern 1, Alpine Grasheide Hohe Tauern. Universitätsverlag Wagner. Innsbruck p 47–68

    Google Scholar 

  • Körner Ch (1977b) Blattdiffusionswiderstände verschiedener Pflanzen im alpinen Grasheidegürtel der Hohen Tauern. Phil Trans R Soc London Bp p 69–82

  • Körner Ch (1977c) Der CO2 Gaswechsel verschiedener Pflanzen im alpinen Grasheidegürtel I. Der Einsatz einer neuen teilklimatisierten Meßkammer für in situ Messungen an kleinwüchsigen Gebirgspflanzen. Phil Trans R Soc London B p 133–140

  • Körner Ch, DeMoraes JAPV (1979) Water potential and diffusion resistance in alpine cushion plants on clear summer days. Oecol Plant 14:109–120

    Google Scholar 

  • Körner Ch (1980) Zur anthropogenen Belastbarkeit der alpinen Vegetation. In: W Haber (ed), Verh Ges Ökol 8, Freising 1979, Ges Ökol, Göttingen p 451–461

    Google Scholar 

  • Körner Ch, Wieser G, Guggenberger H (1980) Der Wasserhaushalt eines alpinen Rasens. In: H Franz (ed), Veröff Österr MaB-Hochgebirgsprogramm Hohe Tauern 3, Untersuchungen an alpinen Böden in den Hohen Tauern 1974–1978. Stoffdynamik und Wasserhaushalt. Universitätsverlag, Wagner, Innsbruck p 243–264

    Google Scholar 

  • Körner Ch, Mayr R (1981) Stomatal behaviour in alpine plant communities between 600 and 2 600 meter above sea level. In: J Grace, D Ford, PG Jarvis (ed), Plants and their atmospheric environment. Blackwell, Oxford London Edinburgh Boston Melbourne p 205–218

    Google Scholar 

  • Larcher W, Wagner J (1976) Temperaturgrenzen der CO2 Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11:361–374

    Google Scholar 

  • Larcher W (1977) Ergebnisse des IBP-Projekts “Zwergstrauchheide Patscherkofel”. Sitzungsber Österr Akad Wiss, Math-naturw Kl Abt 1, 186:301–371

    Google Scholar 

  • Larcher W (1980a) Klimastress im Gebirge—Adaptationstraining und Selectionsfilter für Pflanzen. Rheinisch-Westfälische Akad Wiss Düsseldorf, Vorträge N 291:49–88

    Google Scholar 

  • Larcher W (1980b) Physiological plant ecology (2nd ed), Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lechowicz MJ (1978) Carbon dioxide exchange in Cladina lichens from subarctic and temperate habitats. Oecologia (Berl) 32:225–237

    Google Scholar 

  • Lloyd NDH, Woolhouse HW (1976) The effect of temperature on photosynthesis and transpiration in populations of Sesleria caerulea (L)ARD. New Phytol 77:553–559

    Google Scholar 

  • Mark AF (1975) Photosynthesis and dark respiration in three alpine snow tussocks (Chionochloa ssp) under controlled environments. NZ J Bot 13:93–122

    Google Scholar 

  • Mayo JM, Hartgerink AP, Despain DG, Thompson RG, van Zinderen-Bakker EM, Nelson SD (1977) Gas exchange studies of Carex and Dryas, Truelove Lowland. In: LC Bliss (ed), Truelove Lowland, Devon Island, Canada: A high arctic ecosystem. The University of Alberta Press, Edmonton p 265–280

    Google Scholar 

  • Mead R, Pike DJ (1975) A review of response surface methodology from biometric view. Biometrics 32:803–851

    Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jap J Bot 14:22–52

    Google Scholar 

  • Mooney HA, Billings WD (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecol Monogr 31:1–29

    Google Scholar 

  • Mooney HA, Johnson AW (1965) Comparative physiological ecology of an arctic and alpine population of Thalictrum alpinum L. Ecology 46:721–727

    Google Scholar 

  • Moser W, Brzoska W, Zachhuber K, Larcher W (1977) Ergebnisse des IBP-Projekts “Hoher Nebelkogel 3184 m”. Stitzungsber Österr Akad Wiss Math-naturw Kl Abt 1, 186:387–419

    Google Scholar 

  • Norman JM (1980) Interfacing leaf and canopy light interception models. In: JD Hesketh, JW Jones (ed), Predicting photosynthesis for ecosystem models II. CRC Press Inc, Boca Raton p 49–67

    Google Scholar 

  • Oberdorfer E (1959) Borstgras- und Krummseggenrasen in den Alpen. Beitr naturkundl Forsch Südwestdeutschland 13:117–143

    Google Scholar 

  • Pümpel B (1977) Bestandesstruktur, Phytomassevorrat und Produktion verschiedener Pflanzengesellschaften im Glocknergebiet. In: A Cernusca (ed), Veröff Österr MaB-Hochgebirgsprogramm Hohe Tauern 1, Alpine Grasheide Hohe Tauern. Universitätsverlag Wagner, Innsbruck p 83–101

    Google Scholar 

  • Ross J (1975) Relative transfer in plant communities. In: JL Monteith (ed), Vegetation and the atmosphere 1. Academic Press, London New York San Francisco, p 13–55

    Google Scholar 

  • Salisbury FB, Spomer GG (1964) Leaf temperatures of alpine plants in the field. Planta 60:497–505

    Google Scholar 

  • Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus silvatica L) in Abhängigkeit von den Klimafaktoren im Freiland. Flora 159:177–232

    Google Scholar 

  • Seeber MC (1982) Bestandesstruktur, Mikroklima und Energiehaushalt alpiner Graslandökosysteme zwischen 1 500 and 2 500 m MH. Theses, Innsbruck

  • Scott D, Billings WD (1964) Effects of environmental factors on standing crop and productivity of an alpine tundra. Ecol Monogr 34:243–270

    Google Scholar 

  • Tieszen LL (1973) Photosynthesis and respiration in arctic tundra grasses: fied light intensity and temperature responses. Arctic and Alpine Res 5:239–251

    Google Scholar 

  • Tieszen LL, Wieland NK (1975) Physiological ecology of arctic and alpine photosynthesis and respiration. In: FJ Vernberg (ed), Physiological adaptation to the environment Intex Educational Publ, New York, p 157–200

    Google Scholar 

  • Tranquillini W (1979) Physiological ecology of alpine timberline. Ecological studies 31. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Weiss E (1977) Tabellen zum Witterungsablauf während der Vegetationsperiode 1976 für die alpine Grasheide beim Wallackhaus. In: A Cernusca (ed), Veröff Österr MaB-Hochgebirgsprogramm Hohe Tauern 1, Alpine Grasheide Hohe Tauern. Universitätsverlag Wagner, Innsbruck p 157–175

    Google Scholar 

  • Weiss E (1980) Weltere Beiträge zur Klimatologie des Untersuchungsgebietes im oberen Bereich der Südrampe der Glocknerstraße. In: H Franz (ed), Veröff Österr MaB-Hochgebirgsprogramm Hohe Tauern 3, Untersuchungen an alpinen Böden in den Hohen Tauern 1974–1978. Stoffdynamik und Wasserhaushalt. Universitätsverlag Wagner, Innsbruck p 7–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Körner, C. CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature. Oecologia 53, 98–104 (1982). https://doi.org/10.1007/BF00377142

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00377142

Keywords

Navigation