Skip to main content
Log in

Thermal effects on the growth and fatty acid composition of four harmful algal bloom species: Possible implications for ichthyotoxicity

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Little is known regarding how harmful algal bloom species respond to different temperatures in terms of fatty acid production. This study examined the effects of temperature on the growth rates, cell volumes, and fatty acid concentrations and compositions of four harmful algal bloom species (HABs), Akashiwo sanguinea, Alexandrium tamarense, Chattonella ovata, and Prorocentrum minimum. The HABs species were cultured at 15, 20, 25, and 30°C in a nutrient-enriched medium. Three of the species maintained optimal growth rates over a wide range of temperatures, but A. tamarense did not. The cell volumes of each species showed little change over the temperature range. The total fatty acid concentrations in A. sanguinea, A. tamarense and C. ovata decreased as the temperature increased, but P. minimum showed no trend in this respect. Polyunsaturated fatty acids (PUFAs), the key biochemical components that maintain cell membrane fluidity and which are associated with toxicity, decreased in both concentration and proportion of total fatty acids as temperature increased, except in A. sanguinea, in which the proportion of PUFAs to the total fatty acids increased. These reductions in PUFA concentration and proportion could reduce cell membrane fluidity and toxicity in HABs; however, enhanced growth and/or ruptured cells, which are considered more toxic than intact cells, could compensate for the reduced per-cell toxicity. This phenomenon might impact on the marine ecosystem and aquaculture industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackman RG, Tocher CS, McLachlan J (1968) Marine phytoplankter fatty acids. J Fish Res Board Can 25:1603–1620

    Article  Google Scholar 

  • Arzul G, Gentien P, Bodennec G, Toularastel F, Youenou A, Crassous MP (1995) Comparison of toxic effects of Gyrodinium cf. nagasakiense polyunsaturated fatty acids. In: Lassus P, Arzul G, Eradr E, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Intercept Ltd, Paris, pp 395–400

    Google Scholar 

  • Arzul G, Gentiaen P, Bodennec G (1998) Potential toxicity of microalgal polyunsaturated fatty acids (PUFAs). In: Baudimant G, Guezennec JH, Roy P, Samain J-F (eds) Marine lipids. IFREMER Publisher, Nantes, pp 53–62

    Google Scholar 

  • Becker EW (2007) Microalgae as a source of protein. Biotechnol Adv 25:207–210

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  Google Scholar 

  • Cho ES, Choi BD, Cho YC, Kim TJ, Kim HG (2001) Discrimination of three highly toxic Alexandrium tamarense (Dinophyceae) isolates using FITC-conjugated lectin probes. J Plankton Res 23(1):89–95

    Article  Google Scholar 

  • Cuellar-Bermudez SP, Romero-Ogawa MA, Vannela R, Lai YS, Rittmann BE, Parra-Saldivar R (2015) Effects of light intensity and carbon dioxide on lipids and fatty acids produced by Synechocystis sp. PCC6803 during continuous flow. Algal Res 12:10–16

    Article  Google Scholar 

  • Evjemo JO, Tokle N, Vadstein O, Olsen Y (2008) Effect of essential dietary fatty acids on egg production and hatching success of the marine copepod Temora longicornis. J Exp Mar Biol Ecol 365:31–37

    Article  Google Scholar 

  • Fu M, Koulman A, Van Rijssel M, Lützen A, de Boer MK, Tyl MR, Liebezeit G (2004) Chemical characterisation of three haemolytic compounds from the microalgal species Fibrocapsa japonica (Raphidophyceae). Toxicon 43:355–363

    Article  Google Scholar 

  • Grzebyk D, Berland B (1996) Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (Dinophyceae) from the Mediterranean Sea. J Plankton Res 18:1837–1849

    Article  Google Scholar 

  • Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods-culture methods and growth measurements. Cambridge University Press, Cambridge, pp 289–311

    Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 29–60

    Chapter  Google Scholar 

  • Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses and harmful algal blooms: a formidable predictive challenge. J Phycol 46(2):220–235

    Article  Google Scholar 

  • Hamasaki K, Horie M, Tokimitsu S, Toda T, Taguchi S (2001) Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, western Japan, as a reflection of changing environmental conditions. J Plankton Res 23:271–278

    Article  Google Scholar 

  • Heil CA, Glibert PM, Fan C (2005) Prorocentrum minimum (Pavillard) Schiller: a review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4:449–470

    Article  Google Scholar 

  • Hiroishi S, Okada H, Imai I, Yoshida T (2005) High toxicity of the novel bloom forming species of Chattonella ovata (Raphidophyceae) to cultured fish. Harmful Algae 4:783–787

    Article  Google Scholar 

  • Ikawa M (2004) Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms. UNH Center Fresh Biol Res 6(2):17–44

    Google Scholar 

  • James GO, Hocart CH, Hillier W, Price GD, Djordjevic MA (2013) Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii. Bioresoure Technol 127:441–447

    Article  Google Scholar 

  • Jiang Y, Chen F (2000) Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. J Am Oil Chem Soc 77:613–617

    Article  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  Google Scholar 

  • Kim DI, Matsuyama Y, Nagasoe S, Yamaguchi M, Yoon YH, Oshima Y, Imada N, Honjo T (2004) Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J Plnakton Res 26(1):61–66

    Article  Google Scholar 

  • Laabir M, Jauzein C, Genovesi B, Masseret E, Grzebyk D, Cecchi P, Vaquer A, Perrin Y, Collos Y (2011) Influence of temperature, salinity and irradiance on the growth and cell yield of the harmful red tide dinoflagellate Alexandrium catenella colonizing Mediterranean waters. J Plankton Res 33(10):1550–1563

    Article  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. BBA-Biomembranes 1666:142–157

    Article  Google Scholar 

  • Lynch DV, Thompson GA Jr (1982) Low temperature-induced alterations in the chloroplast and microsomal membranes of Dunaliella salina. Plant Physiol 69(6):1369–1375

    Article  Google Scholar 

  • Mansour MP, Volkman JK, Jackson AE, Blackburn SI (1999) The fatty acid and sterol composition of five marine dinoflagellates. J Phycol 35:710–720

    Article  Google Scholar 

  • Marshall JA, Nichols PD, Hallegraeff GM (2002) Chemotaxonomic survey of sterols and fatty acids in six marine raphidophyte algae. J Appl Phycol 14:255–265

    Article  Google Scholar 

  • Matsubara T, Nagasoe S, Yamasaki Y, Shikata T, Shimasaki Y, Oshima Y, Honjo T (2007) Effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea. J Exp Mar Biol Ecol 342:226–230

    Article  Google Scholar 

  • Nichols PD, Guckert JB, White DC (1986) Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Meth 5:49–55

    Article  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Biol 47:541–568

    Article  Google Scholar 

  • Okaichi T (1989) Red tide problems in the Seto Inland Sea, Japan. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides, biology, environmental science and toxicology. Elsevier, New York, pp 137–142

    Google Scholar 

  • Rabbani MM, Rehman AU, Harms CE (1990) Mass mortality of fishes caused by dinoflagellate bloom in Gwdar Bay, Southwestern Pakistan. In: Graneli E, Sundstrom B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 209–214

    Google Scholar 

  • Renaud SM, Zhou HC, Parry DL, Loung-Van T, Woo KC (1995) Effects of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp., (clone T.ISO). J Appl Phycol 7:595–602

    Article  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effects of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae; Commercial implications and future research directions. J Phycol 26: 393–399

    Article  Google Scholar 

  • Sajiki J, Yamanaka T, Takahashi H, Tsuruoka Y (1993) Possibility of diarrhea effect by eicosapentaenoic acid (EPA) and autoxidized EPA. Jpn J Toxicol Environ Health 39(2):100–105

    Article  Google Scholar 

  • Satu N, Murata N (1980) Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis. The central role of diacylmonoalactosylglycerol in thermo adaption. Biochim Biophys Acta 619:353–365

    Article  Google Scholar 

  • Sayegh FAQ, Montagnes DJS (2011) Temperature shifts induce intraspecific variation in microalgal production and biochemical composition. Bioresource Technol 102:3007–3013

    Article  Google Scholar 

  • Sellem F, Pesando D, Bodennec G, Abed AE, Girard JP (2000) Toxic effects of Gymnodinium cf. mikimotoi unsaturated fatty acids to gametes and embryos of the sea urchin Paracentrotus lividus. Water Res 34:550–556

    Article  Google Scholar 

  • Shin K-H, Hama T, Handa N (2003) Effect of nutrient conditions on the composition of photosynthetic products in the East China Sea and surrounding waters. Deep-Sea Res Pt II 50:389–401

    Article  Google Scholar 

  • Suzuki T, Matsuyama Y (1995) Determination of free fatty acids in marine phytoplankton causing red tides by fluorometric high-performance liquid chromatography. J Am Oil Chem Soc 72:1211–1214

    Article  Google Scholar 

  • Teoh ML, Chu WL, Marchant H, Phang SM (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421–430

    Article  Google Scholar 

  • Thompson PA, Guo M, Harrison PJ, Whyte JNC (1992b) Effects of variation in temperature: II. On the fatty acid composition of eight species of marine phytoplankton. J Phycol 28:488–497

    Article  Google Scholar 

  • Uchida A, Shimada A, Ishida Y (1988) Antibacterial and antialgal substances produced by the dinoflagellate Peridinium bipes. Nippon Suisan Gakk 54:1941–1945

    Article  Google Scholar 

  • Yamaguchi H, Mizushima K, Sakamoto S, Yamaguchi M (2010) Effects of temperature, salinity and irradiance on growth of the novel red tide flagellate Chattonella ovata (Raphidophyceae). Harmful algae 9:398–401

    Article  Google Scholar 

  • Yasumoto T, Inderdal B, Aune T, Hormazabal V, Skulberg OM, Oshima Y (1990) Screening for hemolytic and ichthyotoxic components of Chrysochromulina polyepsis and Gyrodinium aureolum from Norwegian coastal waters. In: Graneli E, Sundstron B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 436–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungsoon Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, B., Ju, SJ., Ko, AR. et al. Thermal effects on the growth and fatty acid composition of four harmful algal bloom species: Possible implications for ichthyotoxicity. Ocean Sci. J. 51, 333–342 (2016). https://doi.org/10.1007/s12601-016-0029-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-016-0029-5

Key words

Navigation