Skip to main content
Log in

Estimating net N mineralization under unfertilized winter wheat using simulations with NET N and a balance approach

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Eliminating uncertainty in soil N supply could reduce fertilizer input, but the amount of N mineralized during plant growth is usually still unknown. We aimed to test the relatively simple two-pool net N mineralization model NET N that uses site-specific temperature and soil water functions as well as pedotransfer functions for deriving the pool sizes and was developed for NW Germany. The objectives were to (1) evaluate, if field net N mineralization under unfertilized winter wheat could be satisfactorily simulated, and to (2) examine the variation in time patterns of net N mineralization within years and sites and from two functional N pools: a rather small, fast mineralizable N pool (Nfast) and a much greater, slowly mineralizable N pool (Nslow). NET N simulations for 36 site-year-combinations and up to five dates within the growing season were evaluated with detailed N balance approaches (calculated from: soil mineral N contents, plant N uptake using estimates of green area index, simulated N leaching). Simulated net N mineralization was highly significantly correlated (r2 = 0.58; root mean square error = 24.2 kg N ha−1) to estimations from the most detailed balance approach, with total simulated net N mineralization until mid August ranging from 62.1 to 196.5 kg N ha−1. It also became evident that N mineralization from pool Nslow—in contrast to pool Nfast—was considerably higher for loess soils than for sandy or loamy soils. The results suggest that NET N was adequate for simulations in unfertilized winter wheat. However, further field studies are necessary for proving its applicability under fertilized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ad-hoc-AG Boden (1999) Verknüpfungsregel 1.18: Ermittlung der Parameter für das Modell einer stetigen Funktion der θ(ψ)-Beziehung von VAN GENUCHTEN (1980). http://www.bgr.bund.de/DE/Themen/Boden/Netzwerke/Adhocag/Downloads/Ergaenzungsregel_1_18.pdf?__blob=publicationFile&v=2. Accessed 26 Nov 2013

  • Andersson A, Johansson E (2006) Nitrogen partitioning in entire plants of different spring wheat cultivars. J Agron Crop Sci 192:121–131

    Article  CAS  Google Scholar 

  • Appel T (1994) Relevance of soil N mineralization, total N demand of crops and efficiency of applied N for fertilizer recommendations for cereals: theory and application. J Plant Nutr Soil Sci 157:407–414

    CAS  Google Scholar 

  • Beese F, Ploeg RRVD, Richter W (1978) Der Wasserhaushalt einer Löß-Parabraunerde unter Winterweizen und Brache. Computermodelle und ihre experimentelle Verifizierung. Z Acker-und Pflanzenbau 146:1–19

    Google Scholar 

  • Benbi D, Richter J (2002) A critical review of some approaches to modelling nitrogen mineralization. Biol Fertil Soils 35:168–183

    Article  CAS  Google Scholar 

  • Builtjes P, Banzhaf S, Gauger T, Hendriks E, Kerschbaumer A, Koenen M, Nagel H-D, Schaap M, Scheuschner T, Schlutow A (2011) Erfassung, Prognose und Bewertung von Stoffeinträgen und ihren Wirkungen in Deutschland. UBA-Bericht UBA-FB 001490, 38/2011. http://www.uba.de/uba-info-medien/4137.html. Accessed 07 March 2014

  • Chirinda N, Olesen JE, Porter JR (2012) Root carbon input in organic and inorganic fertilizer-based systems. Plant Soil 359:321–333

    Article  CAS  Google Scholar 

  • Dessureault-Rompré J, Zebarth BJ, Burton DL, Georgallas A, Sharifi M, Porter GA, Moreau G, Leclerc Y, Arsenault WJ, Chow TL, Grant CA (2012) Prediction of soil nitrogen supply in potato fields using soil temperature and water content information. Soil Sci Soc Am J 76:936–949

    Article  Google Scholar 

  • Engels T, Kuhlmann H (1993) Effect of the rate of N fertilizer on apparent net mineralization of N during and after cultivation of cereal and sugar beet crops. J Plant Nutr Soil Sci 156:149–154

    CAS  Google Scholar 

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Centre for Agricultural Publishing and Documentation, Wageningen

    Google Scholar 

  • He X, Izaurralde RC, Vanotti MB, Williams JR, Thomson AM (2006) Simulating long-term and residual effects of nitrogen fertilization on corn yields, soil carbon sequestration, and soil nitrogen dynamics. J Environ Qual 35:1608–1619

    Article  CAS  PubMed  Google Scholar 

  • Henke J, Böttcher U, Neukam D, Sieling K, Kage H (2008) Evaluation of different agronomic strategies to reduce nitrate leaching after winter oilseed rape (Brassica napus L.) using a simulation model. Nutr Cycl Agroecosyst 82:299–314

    Article  Google Scholar 

  • Heumann S, Böttcher J, Springob G (2002) N mineralization parameters of sandy arable soils. J Plant Nutr Soil Sci 165:441–450

    Article  CAS  Google Scholar 

  • Heumann S, Ringe H, Böttcher J (2011a) Field-specific simulations of net N mineralization based on digitally available soil and weather data. I. Temperature and soil water dependency of the rate coefficients. Nutr Cycl Agroecosyst 91:219–234

    Article  Google Scholar 

  • Heumann S, Ringe H, Böttcher J (2011b) Field-specific simulations of net N mineralization based on digitally available soil and weather data: II. Pedotransfer functions for the pool sizes. Nutr Cycl Agroecosyst 91:339–350

    Article  CAS  Google Scholar 

  • Heumann S, Fier A, Haßdenteufel M, Höper H, Schäfer W, Eiler T, Böttcher J (2013) Minimizing nitrate leaching while maintaining crop yields: insights by simulating net N mineralization. Nutr Cycl Agroecosyst 95:395–408

    Article  CAS  Google Scholar 

  • Johnen T, Boettcher U, Kage H (2012) A variable thermal time of the double ridge to flag leaf emergence phase improves the predictive quality of a CERES-Wheat type phenology model. Comput Electron Agric 89:62–69

    Article  Google Scholar 

  • Justes E, Mary B, Meynard JM, Machet JM, Thelier-Huche L (1994) Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot 74:397–407

    Article  CAS  Google Scholar 

  • Justes E, Meynard JM, Mary B, Plenet D (1997) Diagnosis using stem base extract: JUBIL method. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer, Berlin, pp 163–187

    Chapter  Google Scholar 

  • Kage H, Stützel H (1999) HUME: an object oriented component library for generic modular modelling of dynamic systems. In: Donatelli CSM, Villalobos F, Villar JM (eds) Modelling cropping systems. European Society of Agronomy, Lleida, pp 299–300

    Google Scholar 

  • Kage H, Alt C, Stützel H (2003) Aspects of nitrogen use efficiency of cauliflower I: a simulation modelling based analysis of nitrogen availability under field conditions. J Agric Sci 141:1–16

    Article  CAS  Google Scholar 

  • Kersebaum KC (2007) Modelling nitrogen dynamics in soil-crop systems with HERMES. Nutr Cycl Agroecosyst 77:39–52

    Article  Google Scholar 

  • Köhler K, Duynisveld WHM, Böttcher J (2006) Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils. J Plant Nutr Soil Sci 169:185–195

    Article  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Lemaire G, Jeuffroy M, Gastal F (2008) Diagnosis tool for plant and crop N status in vegetative stage: theory and practices for crop N management. Eur J Agron 28:614–624

    Article  CAS  Google Scholar 

  • Lobell DB (2007) The cost of uncertainty for nitrogen fertilizer management: a sensitivity analysis. Field Crops Res 100:210–217

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Proceedings of the 19th Symposium of the Society for Experimental Biology, vol 19. University Press, Cambridge, pp 205–234

  • Nendel C, Kersebaum KC, Nieder R, Kubiak R (2007) Nitrogen mineralization from mature bio-waste compost in vineyard soils. III. Simulation of soil mineral–nitrogen dynamics. J Plant Nutr Soil Sci 170:598–607

    Article  Google Scholar 

  • Nyiraneza J, Ziadi N, Zebarth BJ, Sharifi M, Burton DL, Drury CF, Bittman S, Grant CA (2012) Prediction of soil nitrogen supply in corn production using soil chemical and biological indices. Soil Sci Soc Am J 76:925–935

    Article  CAS  Google Scholar 

  • Paul KI, Polglase PJ, O’Connell AM, Carlyle JC, Smethurst PJ, Khanna PK (2003) Defining the relation between soil water content and net nitrogen mineralization. Eur J Soil Sci 54:39–47

    Article  CAS  Google Scholar 

  • Plénet D, Lemaire G (1999) Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops: determination of critical N concentration. Plant Soil 216:65–82

    Article  Google Scholar 

  • Ratjen AM, Böttcher U, Kage H (2012) Improved modeling of grain number in winter wheat. Field Crops Res 133:167–175

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 1:318–333

    Google Scholar 

  • Rodrigo A, Rescous S, Neel C, Mary B (1997) Modelling temperature and moisture effects on C–N transformations in soils: comparison of nine models. Ecol Model 102:325–339

    Article  CAS  Google Scholar 

  • Ros GH, Hanegraaf MC, Hoffland E, van Riemsdijk WH (2011) Predicting soil N mineralization: relevance of organic matter fractions and soil properties. Soil Biol Biochem 43:1714–1722

    Article  CAS  Google Scholar 

  • Schomberg HH, Wietholter S, Griffin TS, Reeves DW, Cabrera ML, Fisher DS, Endale DM, Novak JM, Balkcom KS, Raper RL, Kitchen NR, Locke MA, Potter KN, Schwartz RC, Truman CC, Tyler DD (2009) Assessing indices for predicting potential nitrogen mineralization in soils under different management systems. Soil Sci Soc Am J 73:1575–1586

    Article  CAS  Google Scholar 

  • Schröder JJ (1999) Effect of split applications of cattle slurry and mineral fertilizer-N on the yield of silage maize in a slurry-based cropping system. Nutr Cycl Agroecosyst 53:209–218

    Article  Google Scholar 

  • Siemens J, Pacholski A, Heiduk K, Giesemann A, Schulte U, Dechow R, Kaupenjohann M, Weigel H (2012) Elevated air carbon dioxide concentrations increase dissolved carbon leaching from a cropland soil. Biogeochemistry 108:135–148

    Article  CAS  Google Scholar 

  • Sponagel H (ed) (2005) Bodenkundliche Kartieranleitung, 5th edn. Schweizerbart, Stuttgart

    Google Scholar 

  • St. Luce M, Ziadi N, Nyiraneza J, Tremblay GF, Zebarth BJ, Whalen JK, Laterrière M (2012) Near infrared reflectance spectroscopy prediction of soil nitrogen supply in humid temperate regions of Canada. Soil Sci Soc Am J 76:1454–1461

    Article  CAS  Google Scholar 

  • VDLUFA (2002) Handbuch der Landwirtschaftlichen Versuchs-und Untersuchungsmethodik. Band I. Die Untersuchung von Böden. 3. Teillieferung, 4th edn. VDLUFA, Darmstadt

  • Wienhaus S, Höper H, Eisele M, Meesenburg H, Schäfer W (2008) Nutzung bodenkundlich-hydrogeologischer Informationen zur Ausweisung von Zielgebieten für den Grundwasserschutz. GeoBerichte 9. LBEG, Hannover. http://www.lbeg.niedersachsen.de/portal/live.php?navigation_id=771&article_id=811&_psmand=4: Accessed 07 March 2014

Download references

Acknowledgments

We wish to thank Silke Bokeloh and Ulrike Pieper for their excellent work in the laboratory as well as Marianne Fritzensmeier, Dorit Ebner, Franziska Meyer-Schatz, Horst Ringe, Hubert Groh and Andreas Krimphoff for dedicated numerous field measurements. The study was funded by the “Deutsche Bundesstiftung Umwelt” (German Federal Environmental Foundation), Osnabrück.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Heumann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heumann, S., Ratjen, A., Kage, H. et al. Estimating net N mineralization under unfertilized winter wheat using simulations with NET N and a balance approach. Nutr Cycl Agroecosyst 99, 31–44 (2014). https://doi.org/10.1007/s10705-014-9616-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-014-9616-y

Keywords

Navigation