Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T06:01:02.505Z Has data issue: false hasContentIssue false

The effects of global warming on soybean yields in a long-term fertilization experiment in Northeast China

Published online by Cambridge University Press:  15 May 2009

H. F. ZHENG
Affiliation:
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, P. R. China
L. D. CHEN*
Affiliation:
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, P. R. China
X. Z. HAN
Affiliation:
National Field Research Station of Agroecosystem in Hailun; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin150081, P. R. China
*
*To whom all correspondence should be addressed. Email: liding@mail.rcees.ac.cn; zhfdd@msn.com

Summary

Understanding how crop systems might respond to recent climate change is fundamental to the successful adaptation of efforts for sustainable agriculture. In the present paper, records over the period 1987–2004 from a long-term agroecosystem experiment carried out in Northeast China were used to explore the impacts of global warming on soybean (Glycine max (L) Merr.) yields under different controlled fertilization treatments. The results indicated that soybean yields were closely related to growing season temperatures. In most fertilization treatments, soybean yields showed a significant negative response to higher daily maximum temperature and greater diurnal temperature range (DTR), whereas they showed a significant positive response to higher daily minimum temperature. Analysis of covariance showed that these responses of soybean yields to temperature variables did not differ across fertilization treatments. Overall, soybean yields have declined significantly due to the warming trends since 1987. This has been mainly attributed to the higher daily maximum temperature. The present report demonstrates that soybean production in Northeast China may face challenges due to global warming unless potential adaptation options are adopted. The true mechanisms behind these yield impacts need further investigation to address effective agricultural adaptations for soybean systems to adapt to global warming.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., Morgan, P. B., Naidu, S. L., Ra, H. S. Y., Zhu, X. G., Curtis, P. S. & Long, S. P. (2002). A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology 8, 695709.CrossRefGoogle Scholar
Allen, L. H. Jr. & Boote, K. J. (2000). Crop ecosystem responses to climatic change: soybean. In Climate Change and Global Crop Productivity (Eds Reddy, K. R. & Hodges, H. F.), pp. 133160. New York: CABI.CrossRefGoogle Scholar
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T. & Valentini, R. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529533.CrossRefGoogle ScholarPubMed
Cutforth, H. W., McGinn, S. M., McPhee, K. E. & Miller, P. R. (2007). Adaptation of pulse crops to the changing climate of the northern Great Plains. Agronomy Journal 99, 16841699.Google Scholar
Dai, A., Del Genio, A. D. & Fung, I. Y. (1997). Clouds, precipitation and temperature range. Nature 386, 665666.CrossRefGoogle Scholar
De Bruin, J. L. & Pedersen, P. (2008). Soybean seed yield response to planting date and seeding rate in the upper Midwest. Agronomy Journal 100, 696703.CrossRefGoogle Scholar
Dhakhwa, G. B. & Campbell, C. L. (1998). Potential effects of differential day-night warming in global climate change on crop production. Climatic Change 40, 647667.CrossRefGoogle Scholar
Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P. & Folland, C. K. (1997). Maximum and minimum temperature trends for the globe. Science 277, 364367.CrossRefGoogle Scholar
Editorial Board – China Agriculture Press (2006). China Agriculture Yearbook 2006 (in Chinese). Beijing: China Agriculture Press.Google Scholar
Egli, D. B. & Bruening, W. P. (2004). Water stress, photosynthesis, seed sucrose levels and seed growth in soybean. Journal of Agricultural Science, Cambridge 142, 18.CrossRefGoogle Scholar
Egli, D. B. & Wardlaw, I. F. (1980). Temperature response of seed growth characteristics of soybeans. Agronomy Journal 72, 560564.Google Scholar
FAOSTAT (2006). Statistics Database. Available online at: http://faostat.fao.org/default.aspx (verified 8 April 2009).Google Scholar
Ferris, R., Wheeler, T. R., Hadley, P. & Ellis, R. H. (1998). Recovery of photosynthesis after environmental stress in soybean grown under elevated CO2. Crop Science 38, 948955.CrossRefGoogle Scholar
Gibson, L. R. & Mullen, R. E. (1996). Influence of day and night temperature on soybean seed yield. Crop Science 36, 98–104.Google Scholar
Han, X. Z., Wang, S. Y., Veneman, P. L. M. & Xing, B. S. (2006). Change of organic carbon content and its fractions in black soil under long-term application of chemical fertilizers and recycled organic manure. Communications in Soil Science and Plant Analysis 37, 11271137.CrossRefGoogle Scholar
Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W. & Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences of the United States of America 103, 1428814293.CrossRefGoogle ScholarPubMed
Haskett, J. D., Pachepsky, Y. A. & Acock, B. (2000). Effect of climate and atmospheric change on soybean water stress: a study of Iowa. Ecological Modelling 135, 265277.Google Scholar
Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M. & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America 104, 1969119696.Google Scholar
Huxley, P. A., Summerfield, R. J. & Hughes, A. P. (1976). Growth and development of soyabean cv. TK5 as affected by tropical daylengths, day/night temperatures and nitrogen nutrition. Annals of Applied Biology 82, 117133.Google Scholar
IPCC (2007 a). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
IPCC (2007 b). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
IPCC (2007 c). Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Jin, J., Wang, G. H., Liu, X. B., Xu, Y. X., Mi, L., Wang, C. & Herbert, S. J. (2007). Yield and quality change from 50 years of genetic improvement of soybean cultivars in Heilongjiang Province (in Chinese). Research of Agricultural Modernization 28, 757759.Google Scholar
Kucharik, C. J. & Serbin, S. P. (2008). Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environmental Research Letters 3, 034003. doi: 10.1088/1748-9326/3/3/034003CrossRefGoogle Scholar
Lal, M., Singh, K. K., Srinivasan, G., Rathore, L. S., Naidu, D. & Tripathi, C. N. (1999). Growth and yield responses of soybean in Madhya Pradesh, India to climate variability and change. Agricultural and Forest Meteorology 93, 5370.CrossRefGoogle Scholar
Leudders, V. D. (1977). Genetic improvement in yield of soybeans. Crop Science 17, 971972.Google Scholar
Lobell, D. B. (2007). Changes in diurnal temperature range and national cereal yields. Agricultural and Forest Meteorology 145, 229238.CrossRefGoogle Scholar
Lobell, D. B. & Asner, G. P. (2003). Climate and management contributions to recent trends in US agricultural yields. Science 299, 1032.Google Scholar
Lobell, D. B. & Field, C. B. (2007). Global scale climate – crop yield relationships and the impacts of recent warming. Environmental Research Letters 2, 014002. doi: 10.1088/1748-9326/2/1/014002.CrossRefGoogle Scholar
Lobell, D. B., Ortiz-Monasterio, J. I., Asner, G. P., Matson, P. A., Naylor, R. L. & Falcon, W. P. (2005). Analysis of wheat yield and climatic trends in Mexico. Field Crops Research 94, 250256.CrossRefGoogle Scholar
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607610.Google Scholar
Mall, R. K., Lal, M., Bhatia, V. S., Rathore, L. S. & Singh, R. (2004). Mitigating climate change impact on soybean productivity in India: a simulation study. Agricultural and Forest Meteorology 121, 113125.Google Scholar
Mall, R. K., Singh, R., Gupta, A., Srinivasan, G. & Rathore, L. S. (2006). Impact of climate change on Indian agriculture: a review. Climatic Change 78, 445478.CrossRefGoogle Scholar
Meehl, G. A. & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994997.CrossRefGoogle Scholar
Miller, P. R., McConkey, B. G., Clayton, G. W., Brandt, S. A., Staricka, J. A., Johnston, A. M., Lafond, G. P., Schatz, B. G., Baltensperger, D. D. & Neill, K. E. (2002). Pulse crop adaptation in the northern Great Plains. Agronomy Journal 94, 261272.Google Scholar
Morgan, P. B., Bollero, G. A., Nelson, R. L., Dohleman, F. G. & Long, S. P. (2005). Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Global Change Biology 11, 18561865.CrossRefGoogle Scholar
Nicholls, N. (1997). Increased Australian wheat yield due to recent climate trends. Nature 387, 484485.CrossRefGoogle Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37, 637669.CrossRefGoogle Scholar
Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M. & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change – Human and Policy Dimensions 14, 5367.CrossRefGoogle Scholar
Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X. H., Centeno, G. S., Khush, G. S. & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101, 99719975.Google Scholar
Pennisi, E. (2008). Plant genetics: the blue revolution, drop by drop, gene by gene. Science 320, 171173.Google Scholar
Rasmussen, P. E., Goulding, K. W. T., Brown, J. R., Grace, P. R., Janzen, H. H. & Korschens, M. (1998). Agroecosystem – long-term agroecosystem experiments: assessing agricultural sustainability and global change. Science 282, 893896.CrossRefGoogle ScholarPubMed
Rosenzweig, C. & Parry, M. L. (1994). Potential impact of climate-change on world food-supply. Nature 367, 133138.CrossRefGoogle Scholar
Schiermeier, Q. (2008). Water: a long dry summer. Nature 452, 270273.CrossRefGoogle Scholar
Schmidhuber, J. & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America 104, 1970319708.CrossRefGoogle ScholarPubMed
Seddigh, M. & Jolliff, G. D. (1984). Night temperature effects on morphology, phenology, yield and yield components of indeterminate field-grown soybean. Agronomy Journal 76, 824828.Google Scholar
Sionit, N., Strain, B. R. & Flint, E. P. (1987). Interaction of temperature and CO2 enrichment on soybean: photosynthesis and seed yield. Canadian Journal of Plant Science 67, 629636.CrossRefGoogle Scholar
Smithers, J. & Blay-Palmer, A. (2001). Technology innovation as a strategy for climate adaptation in agriculture. Applied Geography 21, 175197.CrossRefGoogle Scholar
Stone, D. A. & Weaver, A. J. (2003). Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model. Climate Dynamics 20, 435445.Google Scholar
Tao, F. L., Yokozawa, M., Xu, Y. L., Hayashi, Y. & Zhang, Z. (2006). Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agricultural and Forest Meteorology 138, 8292.Google Scholar
Voldeng, H. D., Cober, E. R., Hume, D. J., Gillard, C. & Morrison, M. J. (1997). Fifty-eight years of genetic improvement of short-season soybean cultivars in Canada. Crop Science 37, 428431.CrossRefGoogle Scholar
Vose, R. S., Easterling, D. R. & Gleason, B. (2005). Maximum and minimum temperature trends for the globe: an update through 2004. Geophysical Research Letters 32, L23822.Google Scholar
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O. & Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416, 389395.CrossRefGoogle ScholarPubMed
Wilcox, J. R., Schapaugh, W. T., Bernard, R. L., Cooper, R. L., Fehr, W. R. & Niehaus, M. H. (1979). Genetic improvement of soybeans in the Midwest. Crop Science 19, 803805.Google Scholar
Ziska, L. H. & Bunce, J. A. (2007). Predicting the impact of changing CO2 on crop yields: some thoughts on food. New Phytologist 175, 607617.Google Scholar