Skip to main content
Log in

Antibiotic-dependent selection of E. coli clones with increased chaperone activity for highly efficient production of full-length soluble new delhi metallo-beta-lactamase

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

New Delhi metallo-beta-lactamase (NDM-1) is a plasmid-borne enzyme conferring bacterial resistance to any known beta-lactam antibiotics. There is urgent need to develop efficient NDM-1 inhibitors and approaches for early diagnostics of NDM-1 that necessitates structural studies of the enzyme and analysis of the secretion pathways and localization of the protein. Recombinant full-length NDM-1 is produced in E. coli in active form and mostly accumulates in inclusion bodies. We developed a new system that uses antibiotic pressure to select E. coli producing increased quantities of the soluble NDM-1 and showed that the efficiency of production of the soluble NDM-1 depends on the level of chaperone activity in a bacterial cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolesnikov, A.V., Zakharova, M.Yu., Kozyr, A.V., and Shemyakin, I.G., RF Patent no. 2361921, 2009.

  2. Amrein, K.E., Takacs, B., Stieger, M., et al., Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 1048–1052.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bebrone, C., Biochem. Pharmacol., 2007, vol. 74, pp. 1686–1701.

    Article  CAS  PubMed  Google Scholar 

  4. Bochkareva, E.S., Lissin, N.M., and Girshovich, A.S., Nature, 1988, vol. 336, pp. 254–257.

    Article  CAS  PubMed  Google Scholar 

  5. Bush, K. and Jacoby, G., Antimicrob. Agents Chemother., 2010, vol. 54, pp. 969–976.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Carfi, A., Pares, S., Duée, E., et al., EMBO J., 1995, vol. 14, pp. 4914–4921.

    CAS  PubMed  Google Scholar 

  7. Caspers, P., Stieger, M., and Burn, P., Cell Mol. Biol., 1994, vol. 40, pp. 635–644.

    CAS  PubMed  Google Scholar 

  8. Drawz, S.M. and Bonomo, R., Clin. Microbiol. Rev., 2010, vol. 23, pp. 160–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Druker, B.J., Tamura, S., Buchdunger, E., et al., Nat. Med., 1996, vol. 2, pp. 561–566.

    Article  CAS  PubMed  Google Scholar 

  10. Feldman, C. and Anderson, R., Drugs, 2011, vol. 71, pp. 131–153.

    Article  CAS  PubMed  Google Scholar 

  11. García-Saez, I., Hopkins, J., Papamicael, C., et al., J. Biol. Chem., 2003, vol. 278, pp. 23868–23873.

    Article  PubMed  Google Scholar 

  12. Gillespie, S.H. and Singh, K., Recent Pat. Antiinfect. Drug Discov., 2011, vol. 6, pp. 77–83.

    Article  CAS  PubMed  Google Scholar 

  13. Guo, Y., Wang, J., Niu, G., et al., Protein Cell, 2011, vol. 2, pp. 384–394.

    Article  CAS  PubMed  Google Scholar 

  14. Hanes, C.S., Biochem. J., 1932, vol. 26, pp. 1406–1421.

    CAS  PubMed  Google Scholar 

  15. Helfand, M.S. and Bonomo, R.A., Curr. Drug Targets Infect. Disord., 2003, vol. 3, pp. 9–23.

    Article  CAS  PubMed  Google Scholar 

  16. Ho, P.L., Lo, W.U., Yeung, M.K., et al., PLoS One, 2011, vol. 9, p. e17989.

    Article  Google Scholar 

  17. Jin, W., Arakawa, Y., Yasuzawa, H., et al., Biol. Pharm. Bull., 2004, vol. 27, pp. 851–856.

    Article  CAS  PubMed  Google Scholar 

  18. Khlebnikov, A., Datsenko, K.A., Skaug, T., et al., Microbiology, 2001, vol. 147, pp. 3241–3247.

    CAS  PubMed  Google Scholar 

  19. Khlebnikov, A., Risa, O., and Skaug, T., J. Bacteriol., 2000, vol. 182, pp. 7029–7034.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kim, Y.C., Tesar, C., Mire, J., et al., PLoS One, 2011, vol. 6, p. e24621.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. King, D. and Strynadka, N., Protein Sci., 2011, vol. 20, pp. 1484–1491.

    Article  CAS  PubMed  Google Scholar 

  22. Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., et al., Lancet Infect. Dis., 2010, vol. 10, pp. 597–602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Llarrull, L.I., Testero, S., Fisher, J.F., et al., Curr. Opin. Microbiol., 2010, vol. 13, pp. 551–557.

    Article  CAS  PubMed  Google Scholar 

  24. Marra, A., Fut. Microbiol., 2011, vol. 6, pp. 137–141.

    Article  Google Scholar 

  25. Walker, J.E., J. Mol. Biol., 1996, vol. 260, pp. 289–298.

    Article  PubMed  Google Scholar 

  26. Nathwani, D., Davey, P.G., and Marwick, C.A., Clin. Evid., 2010. http://www.ncbi.nlm.nih.gov/pubmed?term=PMID%3A%2021418679. Accessed September 19, 2012.

    Google Scholar 

  27. Predonzani, A., Arnoldi, F., and Lopez-Requena, A., BMC Biotechnol., 2008, vol. 8, p. 41.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Rasmussen, B.A., Yang, Y., Jacobus, N., et al., Antimicrob. Agents Chemother., 1994, vol. 38, pp. 2116–2120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Siemann, S., Clarke, A.J., Viswanatha, T., et al., Biochemistry, 2003, vol. 42, pp. 1673–1683.

    Article  CAS  PubMed  Google Scholar 

  30. Sun, G. and Budde, R.J., Protein Expr. Purif., 2001, vol. 21, pp. 8–12.

    Article  CAS  PubMed  Google Scholar 

  31. Tamilselvi, A. and Mugesh, G., J. Biol. Inorg. Chem., 2008, vol. 13, pp. 1039–1053.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas, P.W., Zheng, M., Wu, S., et al., Biochemistry, 2011, vol. 50, pp. 10102–10113.

    Article  CAS  PubMed  Google Scholar 

  33. Tyler, B., Loomis, W.F., Jr., Magasanik, B., et al., J. Bacteriol., 1967, vol. 94, pp. 2001–2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Vanhove, M., Zakhem, M., Devreese, B., et al., Cell. Mol. Life Sci., 2003, vol. 60, pp. 2501–2509.

    Article  CAS  PubMed  Google Scholar 

  35. Wanger, S., Klepsch, M.M., Schlegel, S., et al., Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 14371–14376.

    Article  Google Scholar 

  36. Yamamoto, T., Takano, T., Iwao, Y., et al., J. Infect. Chemother., 2011, vol. 17, pp. 435–439.

    Article  CAS  PubMed  Google Scholar 

  37. Yang, H., Aitha, M., Hetrick, A.M., et al., Biochemistry, 2012, vol. 51, pp. 3839–3837.

    Article  CAS  PubMed  Google Scholar 

  38. Yong, D., Toleman, A.M., Giske, G.C., et al., Antimicrob. Agents Chemother., 2009, vol. 53, pp. 5046–5054.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhang, H. and Hao, Q., FASEB J., 2011, vol. 25, pp. 2574–2582.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kozyr.

Additional information

Original Russian Text © A.V. Kozyr, N.M. Luneva, A.E. Khlyntseva, I.G. Shemyakin, O.N. Krasavtseva, A.V. Kolesnikov, 2013, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2013, No. 4, pp. 15–21.

About this article

Cite this article

Kozyr, A.V., Luneva, N.M., Khlyntseva, A.E. et al. Antibiotic-dependent selection of E. coli clones with increased chaperone activity for highly efficient production of full-length soluble new delhi metallo-beta-lactamase. Mol. Genet. Microbiol. Virol. 28, 147–155 (2013). https://doi.org/10.3103/S0891416813040046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416813040046

Keywords

Navigation