Skip to main content
Log in

JcCBF2 gene from Jatropha curcas improves freezing tolerance of Arabidopsis thaliana during the early stage of stress

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

High chilling-susceptibility is becoming the bottleneck for cultivation and commercialization of Jatropha curcas L. For insights to chilling resistance ability of this plant species, a cold response transcription factor, JcCBF2, was cloned and studied. It codes a 26 kDa protein, which contains all conserved motifs unique to the C-repeat binding factor (CBF) family and has high similarity to CBFs of Ricinus communis and Populus. Its transcripts express specifically in leaves of Jatropha at cold temperature. After transmitting the report vector, 35S::JcCBF2-GFP, into Arabidopsis thaliana, JcCBF2 protein is main detected in cell nucleus, being consistent to the nuclear orientation signal in its N-terminal. Compared to the control Arabidopsis, the frozen leaves of JcCBF2-overexpressed seedlings grow stronger with less malondialdehyde, smaller leaf conductivity and activer superoxide dismutase, showing their higher freezing tolerance. RT-PCR tests revealed that JcCBF2 functioned mainly at the early stage (0–6 h) of resistance events in Arabidopsis, and its transcripts reduced after 6 h. In addition, JcCBF2 could quickly regulate transcripts of some cold-responsive (COR) genes such as RD29A, COR105A and COR6.6, also during the early stage of frozen treatment. This study not only proves the chilling resistance roles of JcCBF2, but also presents a candidate gene engineering for improvement of chilling tolerance in J. curcas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CBF:

C-repeat-binding factors

DREB:

Dehydration-responsive element binding factors

COR:

Cold-responsive

AFPs:

Antifreeze proteins

ICE:

Inducer of CBF expression

QRT-PCR:

Quantity RT-PCR

ORF:

Open reading frame

GFP:

Green fluorescent protein

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

AA:

Amino acid

References

  1. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360):104–106

    Article  CAS  PubMed  Google Scholar 

  2. Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C, Holt C, Telford J, McArthur A, Worrall D, Hubbard R, Lillford P (2000) Heat-stable antifreeze protein from grass. Nature 406(6793):256

    Article  CAS  PubMed  Google Scholar 

  3. Yamada T, Kuroda K, Jitsuyama Y, Takezawa D, Arakawa K, Fujikawa S (2002) Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta 215(5):770–778

    Article  CAS  PubMed  Google Scholar 

  4. Wei H, Dhanaraj AL, Arora R, Rowland LJ, Fu Y, Sun L (2006) Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. Plant Cell Environ 29(4):558–570

    Article  CAS  PubMed  Google Scholar 

  5. Fujimura S, Suzuki K, Nagao M, Okada M (2012) Acclimation to root chilling increases sugar concentrations in tomato (Solanum lycopersicum L.) fruits. Sci Hortic-Amst 147:34–41

    Article  CAS  Google Scholar 

  6. Gao J, Zhang S, Cai F, Zheng X, Lin N, Qin X, Ou Y, Gu X, Zhu X, Xu Y, Chen F (2012) Characterization, and expression profile of a phenylalanine ammonia lyase gene from Jatropha curcas L. Mol Biol Rep 39(4):3443–3452

    Article  PubMed  Google Scholar 

  7. Kendall Sa (2012) Temperature regulation of seed dormancy and germination in Arabidopsis thaliana. Thesis (Ph.D.), University of York, Heslington

  8. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101(42):15243–15248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Carpaneto A, Ivashikina N, Levchenko V, Krol E, Jeworutzki E, Zhu JK, Hedrich R (2007) Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiol 143(1):487–494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103(21):8281–8286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (Inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133(2):910–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16(4):433–442

    Article  CAS  PubMed  Google Scholar 

  14. Costa GG, Cardoso KC, Del Bem LE, Lima AC, Cunha MA, de Campos-Leite L, Vicentini R, Papes F, Moreira RC, Yunes JA, Campos FA, Da Silva MJ (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genom 11:462

    Article  Google Scholar 

  15. Fairless D (2007) Biofuel: the little shrub that could–maybe. Nature 449(7163):652–655

    Article  PubMed  Google Scholar 

  16. Gao J, Jiang N, Qin X, Zhu X, Ai T, Peng T, Peng T, Wu J, Xu Y, Chen F (2013) Physiological and metabolic responses of Jatropha to Chilling stress. Int J Agric Biol 15(5):871–877

    CAS  Google Scholar 

  17. Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59(4):533–551

    Article  CAS  PubMed  Google Scholar 

  18. Lee SC, Lim MH, Yu JG, Park BS, Yang TJ (2012) Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa. Plant Physiol Biochem 61:142–152

    Article  CAS  PubMed  Google Scholar 

  19. Webb MS, Gilmour SJ, Thomashow MF, Steponkus PL (1996) Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on dehydration-induced phase transitions of phospholipid membranes. Plant Physiol 111(1):301–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hopkins WG, Hüner NPA (2008) Introduction to plant physiology, 4th edn. John Wiley & Sons, Hoboken

    Google Scholar 

  21. Mohseni S, Che H, Djillali Z, Dumont E, Nankeu J, Danyluk J (2012) Wheat CBF gene family: identification of polymorphisms in the CBF coding sequence. Genome 55(12):865–881

    Article  CAS  PubMed  Google Scholar 

  22. Liu B, Yao L, Wang W, Gao J, Chen F, Wang S, Xu Y, Tang L, Jia Y (2010) Molecular cloning and characterization of phospholipase D from Jatropha curcas. Mol Biol Rep 37(2):939–946

    Article  CAS  PubMed  Google Scholar 

  23. Qin X, Gao F, Zhang J, Gao J, Lin S, Wang Y, Jiang L, Liao Y, Wang L, Jia Y, Tang L, Xu Y, Chen F (2011) Molecular cloning, characterization and expression of cDNA encoding translationally controlled tumor protein (TCTP) from Jatropha curcas L. Mol Biol Rep 38(5):3107–3112

    Article  CAS  PubMed  Google Scholar 

  24. El Kayal W, Navarro M, Marque G, Keller G, Marque C, Teulieres C (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot 57(10):2455–2469

    Article  PubMed  Google Scholar 

  25. McKhann HI, Gery C, Berard A, Leveque S, Zuther E, Hincha DK, De Mita S, Brunel D, Teoule E (2008) Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biol 8:105

    Article  PubMed Central  PubMed  Google Scholar 

  26. Van Buskirk HA, Thomashow MF (2006) Arabidopsis transcription factors regulating cold acclimation. Physiol Plantarum 126(1):72–80

    Article  Google Scholar 

  27. Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. P Natl Acad Sci USA 104(52):21002–21007

    Article  CAS  Google Scholar 

  28. Tang M, Sun J, Liu Y, Chen F, Shen S (2007) Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol Biol 63(3):419–428

    Article  CAS  PubMed  Google Scholar 

  29. Tang M, Liu X, Deng H, Shen S (2011) Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Sci 181(6):623–631

    Article  CAS  PubMed  Google Scholar 

  30. Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94(13):7076–7081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Weber H, Hellmann H (2009) Arabidopsis thaliana BTB/POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family. FEBS J 276(22):6624–6635

    Article  CAS  PubMed  Google Scholar 

  32. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33(4):751–763

    Article  CAS  PubMed  Google Scholar 

  33. Xiong YW, Fei SZ (2006) Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta 224(4):878–888

    Article  CAS  PubMed  Google Scholar 

  34. Kume S, Kobayashi F, Ishibashi M, Ohno R, Nakamura C, Takumi S (2005) Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst 80(3):185–197

    Article  CAS  PubMed  Google Scholar 

  35. Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101(11):3985–3990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by National Key Technology R&D Program of 12th Five-Year Plan of China (No. 2011BAD22B08). We are also grateful to Prof. Youliang Peng and Dr. Jun Yang from State Key Laboratory of Mycology Institution of Microbiology Chinese Academy of Sciences for kindly providing the plasmid KNTG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xu.

Additional information

Linghui Wang, Jihai Gao and Xiaobo Qin are the co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Gao, J., Qin, X. et al. JcCBF2 gene from Jatropha curcas improves freezing tolerance of Arabidopsis thaliana during the early stage of stress. Mol Biol Rep 42, 937–945 (2015). https://doi.org/10.1007/s11033-014-3831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3831-0

Keywords

Navigation