Skip to main content

Advertisement

Log in

RASSF1A–Hippo pathway link in patients with urothelial carcinoma of bladder: plausible therapeutic target

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

RASSF1A is a tumor suppressor gene, and its hypermethylation has been observed in cancers. RASSF1A acts as an upstream regulator of Hippo pathway and modulates its function. The aim of this study was to analyze expression of RASSF1A, Hippo pathway molecules (YAP, MST) and downstream targets (CTGF, Cyr61 and AREG) in bladder cancer patients. Later, the link between RASSF1A and Hippo pathway and a potential therapeutic scope of this link in UBC were also studied. MSPCR was performed to study methylation of RASSF1A promoter. Expression of molecules was studied using qPCR, Western blot and IHC. The link between RASSF1A and Hippo pathway was studied using Spearman’s correlation in patients and validated by overexpressing RASSF1A in HT1376 cells and its effect on Hippo pathway was observed using qPCR and Western blot. Further therapeutic potential of this link was studied using MTT and PI assays. The expression of RASSF1A was lower, whereas the expression of YAP, CTGF and CYR61 was higher. The expression of RASSF1A protein gradually decreased, while the expression of YAP, CTGF and CYR61 increased with severity of disease. Based on Spearman’s correlation, RASSF1A showed a negative correlation with YAP, CTGF and CYR61. YAP showed a positive correlation with CTGF and CYR61. To validate this link, RASSF1A was overexpressed in HT1376 cells. Overexpressed RASSF1A activated Hippo pathway, followed by a decrease in CTGF and CYR61 at mRNA, and enhanced cytotoxicity to chemotherapeutic drugs. This study finds a previously unrecognized role of RASSF1A in the regulation of CTGF and CYR61 through mediation of Hippo pathway in UBC and supports the significance of this link as a potential therapeutic target for UBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Silverman DT, Koutros S, Figueora JD, Prokunina-Olsson L, Rothman N (2018) Bladder cancer. In: Thun M, Linet MS, Cerhan JR, Haiman CA, Schottenfeld D (eds) Cancer epidemiology and prevention, 4th edn. Oxford University Press, New York, pp 976–977

    Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre L, Jemal A (2018) Global Cancer Statistics 2018: GLOBOCON estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Janković S (2007) Risk factors for bladder cancer. Tumori 93(1):4–12

    Article  PubMed  Google Scholar 

  4. Antje M, Richter A, Gerd P, Pfeifer B, Reinhard H, Dammann A (2009) The RASSF proteins in cancer; from epigenetic silencing to functional characterization. Biochim Biophys Acta 1796(2):114–128. https://doi.org/10.1016/j.bbcan.2009.03.004

    Article  CAS  Google Scholar 

  5. Dammann R, Schagdarsurengin U, Strunnikova M, Rastetter M, Seidel C, Liu L, Tommasi S, Pfeifer GP (2003) Epigenetic inactivation of the Ras-association domain family 1 (RASSF1A) gene and its function in human carcinogenesis. Histol Histopathol 18:665–677. https://doi.org/10.14670/HH-18.665

    Article  CAS  PubMed  Google Scholar 

  6. Dammann R, Li C, Yoon H, Chin P, Bates S, Pfeifer P (2000) Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25(3):315–319. https://doi.org/10.1038/77083

    Article  CAS  PubMed  Google Scholar 

  7. Dammann R, Schagdarsurengin U, Seidel C, Strunnikova M, Rastetter M, Baier K, Pfeifer GP (2005) The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol 20(2):645–663. https://doi.org/10.14670/HH-20.645

    Article  CAS  PubMed  Google Scholar 

  8. Amin Karishma S, Banerjee Patha P (2002) Cellular functions of RASSF1A and its inactivation in prostate cancer. J Carcinogensis 11:3. https://doi.org/10.4103/1477-3163

    Article  Google Scholar 

  9. Hesson LB, Cooper WN, Latif F (2007) The role of RASSF1A methylation in cancer. Dis Mark 23(1–2):73–87

    Article  CAS  Google Scholar 

  10. Pfeifer P, Dammam R (2005) Methylation of the tumor suppressor gene RASSF1A in human tumors. Biochemistry (Mosc) 70(5):576–583

    Article  CAS  Google Scholar 

  11. Oh HJ, Lee KK, Song SJ, Jin MS, Song MS, Lee JH, Im CR, Lee J, Yonehara S, Lim D (2006) Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res 66(5):2562–2569. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  12. Ciamporcero E, Shen H, Ramakrishnan S, Ku SY, Chintala S, Shen L, Adelaiye R, Miles KM, Ullio C, Pizzimenti S (2016) YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35(12):1541–1553. https://doi.org/10.1038/onc.2015.219

    Article  CAS  PubMed  Google Scholar 

  13. Quan T, Xu Y, Qin Z, Robichaud P, Betcher S, Calderone K, He T, Johnson TM, Voorhees JJ, Fisher GJ (2014) Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma impact on keratinocyte proliferation and stromal cell activation. Am J Pathol 184(4):937–943. https://doi.org/10.1016/j.ajpath.2013.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsai M, Bogart D, Castan ÄJ, Li P, Lupu R (2002) Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene 21(53):8178–8185. https://doi.org/10.1038/sj.onc.1205682

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Z, Cao W, Xie J, Lin J, Shen Z, Zhang Q, Shen J, Xu L, Li E (2009) Expression and prognostic significance of THBS1, Cyr61 and CTGF in esophageal squamous cell carcinoma. BMC Cancer 22(9):291. https://doi.org/10.1186/1471-2407-9-291

    Article  CAS  Google Scholar 

  16. Zhang J, Ji JY, Yu M (2009) YAP dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 11(12):1444–1450. https://doi.org/10.1038/ncb1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  18. Ahn E, Ji Kim, Gi Kim, Park Y (2013) RASSF1A-mediated regulation of AREG via the Hippo pathway in hepatocellular carcinoma. Mol Cancer Res 11(7):748–758. https://doi.org/10.1158/1541-7786

    Article  CAS  PubMed  Google Scholar 

  19. Dulaimi E, Uzzo R, Greenberg R, Al-Saleem T, Cairns P (2004) Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin Cancer Res 10(6):1887–1893

    Article  CAS  PubMed  Google Scholar 

  20. Chan M, Chan L, Tang N, Lo K, Tong J, Chan A, Cheung H, Wong W, Chan P, Lai F (2003) Frequent hypermethylation of promoter region of RASSF1A in tumor tissues and voided urine of urinary bladder cancer patients. Int J Cancer 104(5):611–616. https://doi.org/10.1002/ijc.10971

    Article  CAS  PubMed  Google Scholar 

  21. Lin HH, Ke HL, Wu WJ, Lee YH, Chang LL (2012) Hypermethylation of E-cadherin, p16, p14, and RASSF1A genes in pathologically normal urothelium predict bladder recurrence of bladder cancer after transurethral resection. Urol Oncol 30(2):177–181. https://doi.org/10.1016/j.urolonc.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  22. Bilgrami SM, Qureshi SA, Pervez S, Abbas F (2014) Promoter hypermethylation of tumor suppressor genes correlates with tumor grade and invasiveness in patients with urothelial bladder cancer. Springerplus 3:178. https://doi.org/10.1186/2193-1801-3-178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16(5):425–438. https://doi.org/10.1016/j.ccr.2009.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Minoo P, Zlobec I, Baker K, Tornillo L, Terracciano L, Jass JR, Lugli A (2007) Prognostic significance of mammalian sterile20- like kinase 1 in colorectal cancer. Mod Pathol 20(3):331–338. https://doi.org/10.1038/modpathol.3800740

    Article  CAS  PubMed  Google Scholar 

  25. Ren A, Yan G, You B, Sun J (2008) Down-regulation of mammalian sterile 20-like kinase 1 by heat shock protein 70 mediates cisplatin resistance in prostate cancer cells. Cancer Res 68(7):2266–2274. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  26. Steinhardt AA, Gayyed MF, Klein AP, Dong J, Maitra A, Pan D, Montgomery EA, Anders RA (2008) Expression of Yes-associated protein in common solid tumors. Hum Pathol 39(11):1582–1589. https://doi.org/10.1016/j.humpath.2008.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L, Lowe SW, Poon RT, Luk JM (2009) Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer 115(19):4576–4585. https://doi.org/10.1002/cncr.24495

    Article  CAS  PubMed  Google Scholar 

  28. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125(7):1253–1267. https://doi.org/10.1016/j.cell.2006.05.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng C, Brugge JS, Haber DA (2006) Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 103(33):12405–12410. https://doi.org/10.1073/pnas.0605579103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu JY, Li YH, Lin HX, Liao YJ, Mai SJ, Liu ZW, Zhang ZL, Jiang LJ, Zhang JX, Kung HF (2013) Overexpression of YAP 1 contributes to progressive features and poor prognosis of human urothelial carcinoma of the bladder. BMC Cancer 13:349. https://doi.org/10.1186/1471-2407-13-349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abylkassov R, Xie Y (2016) Role of Yes-associated protein in cancer: an update (Review) Cancer. Oncol Lett 12(4):2277–2282. https://doi.org/10.3892/ol.2016.4955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP (2001) Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res 61(24):8917–8923

    CAS  PubMed  Google Scholar 

  33. D’Antonio KB, Toubaji A, Albadine R, Mondul AM, Platz EA, Netto GJ, Getzenberg RH (2010) Extracellular matrix associate protein CYR61 is linked to prostate cancer development. J Urol 183(4):1604–1610. https://doi.org/10.1016/j.juro.2009.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kok SH, Chang HH, Tsai JY, Hung HC, Lin PH, Chiang CP, Liu CM, Kuo MY (2010) Expression of Cyr61 (CCN1) in human oral squamous cell carcinoma: an independent marker for poor prognosis. Head Neck 32:1665–1673. https://doi.org/10.1002/hed.21381

    Article  PubMed  Google Scholar 

  35. Sampath D, Zhu Y, Winneker RC, Zhang Z (2001) Aberrant expression of Cyr61, a member of the CCN (CTGF/Cyr61/Cef10/NOVH) family, and dysregulation by 17 beta-estradiol and basic fibroblast growth factor in human uterine leiomyomas. J Clin Endocrinol Metab 86(4):1707–1715. https://doi.org/10.1210/jcem.86.4.7423

    Article  CAS  PubMed  Google Scholar 

  36. Chen PP, Li WJ, Wang Y, Zhao S, Li DY, Feng LY, Shi XL, Koeffler HP, Tong XJ, Xie D (2007) Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS ONE 2(6):e534. https://doi.org/10.1371/journal.pone.0000534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J, Ye L, Owen S, Weeks HP, Zhang Z, Jiang WG (2015) Emerging role of CCN family proteins in tumorigenesis and cancer metastasis. Int J Mol Med 36(6):1451–1463. https://doi.org/10.3892/ijmm.2015.2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo C, Tommasi S, Liu L, Yee JK, Dammann R, Pfeifer GP (2007) RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr Biol 17(8):700–705. https://doi.org/10.1016/j.cub.2007.02.055

    Article  CAS  PubMed  Google Scholar 

  39. Zhang H, Pasolli H, Fuchs E (2011) Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci USA 108(6):2270–2275. https://doi.org/10.1073/pnas.1019603108

    Article  PubMed  PubMed Central  Google Scholar 

  40. Khandelwal M, Anand V, Appunni S, Singh P, Seth A, Mathur S, Sharma A (2018) Decitabine augments cytotoxicity of cisplatin and doxorubicin to bladder cancer cells by activating hippo pathway through RASSF1A. Mol Cell Biochem 446(1–2):105–114. https://doi.org/10.1007/s11010-018-3278-z

    Article  CAS  PubMed  Google Scholar 

  41. Donninger H, Clark JA, Monaghan ML, Schmidt ML, Vos M, Clark GJ (2014) Cell cycle restriction is more important than apoptosis induction for RASSF1A protein tumor suppression. J Biol Chem 289(45):31287–31295. https://doi.org/10.1074/jbc.M114.609537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huo X, Zhang Q, Liu AM, Tang C, Gong Y, Bian J, Luk JM, Xu Z, Chen J (2013) Overexpression of Yes-associated protein confers doxorubicin resistance in hepatocellular carcinoma. Oncol Rep 29(2):840–846. https://doi.org/10.3892/or.2012.2176

    Article  CAS  PubMed  Google Scholar 

  43. Touil Y, Igoudjil W, Corvaisier M, Dessein AF, Vandomme J, Monté D, Stechly L, Skrypek N, Langlois C, Grard G (2014) Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin Cancer Res 20(4):837–846. https://doi.org/10.1158/1078-0432

    Article  CAS  PubMed  Google Scholar 

  44. Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71(7):2728–2738. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M. Khandelwal has received Fellowship from Council of Scientific and Industrial Research, India. We acknowledge Dr. P. P. Chattopadhyay (Department of Biochemistry, AIIMS) for providing HeLa cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpana Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, M., Anand, V., Appunni, S. et al. RASSF1A–Hippo pathway link in patients with urothelial carcinoma of bladder: plausible therapeutic target. Mol Cell Biochem 464, 51–63 (2020). https://doi.org/10.1007/s11010-019-03648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03648-y

Keywords

Navigation