Skip to main content
Log in

Energetic depression caused by mitochondrial dysfunction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondria, providing most of ATP needed for cell work, realizing numerous specific functions as biosyntheses or degradations, contributing to Ca2+ signalling also play a key role in the pathways to cell death. Impairment of mitochondrial functions caused by mutations of mt-genome and by acute processes are responsible for numerous diseases. The relations between changes on the level of molecules and the clinical state are rather complex, and the prediction of thresholds is difficult. Therefore investigations on different levels of an organismus (genome, metabolites, enzymes, mitochondrial function in vivo and in vitro) are necessary (multi level approach). Metabolic control theory is a valuable tool for understanding the different effects of mutations on the level of enzyme activities and mitochondrial function. Decreased concentrations of adenine nucleotides, leaky outer and inner mitochondrial membranes, decreased rates of mitochondrial linked pathways and decreased activities of respiratory chain enzymes contribute to depression of cellular energy metabolism characterized by decreased cytosolic phosphorylation potentials as one of the most important consequences of mitochondrial impairments. This review regards classical bioenergetic mechanisms of mitochondrial impairment which contribute to energetic depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warburg O, Geissler AW, Lorenz S: Genesis of tumor metabolism by vitamin B1 deficiency (thiamine deficiency). Z Naturforsch B 25: 332–333, 1970

    PubMed  Google Scholar 

  2. Weinhouse S: Glycolysis, respiration, and anomalous gene expression in experimental hepatomas: G.H.A. Clowes memorial lecture. Cancer Res 32: 2007–2016, 1972

    PubMed  Google Scholar 

  3. von Ardenne M: Adaptation of anticancer strategies to progress in tumor immunology. Med Hyptheses 25: 163–173, 1988

    Article  Google Scholar 

  4. Pedersen PL: Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22: 190–274, 1978

    PubMed  Google Scholar 

  5. Wojtczak L: The Crabtree effect: A new look at the old problem. Acta Biochim Pol 43: 361–368, 1996

    PubMed  Google Scholar 

  6. Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH: Mitochondrial bound type II hexokinase: A key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555: 14–20, 2002

    PubMed  Google Scholar 

  7. Gellerich FN, Augustin HW: Studies on the functional significance of mitochondrial bound hexokinase in rabbit reticulocytes. Acta Biol Med Ger 36: 571–577, 1977

    PubMed  Google Scholar 

  8. Evtodienko Y, Teplova V, Duszynski J, Bogucka K, Wojtczak L: The role of cytoplasmic [Ca2+] in glucose-induced inhibition of respiration and oxidative phosphorylation in Ehrlich ascites tumour cells: A novel mechanism of the Crabtree effect. Cell Calcium 15: 439–446, 1994

    Article  PubMed  Google Scholar 

  9. Singh KK: In: Mitochondrial DNA Mutations in Aging, Disease and Cancer. Springer, New York, 1998, pp 1–15

    Google Scholar 

  10. Jennings RB, Herdson PB, Sommers HM: Structural and functional abnormalities in mitochondria isolated from ischemic dog myocardium. Lab Invest 20: 548–557, 1969

    PubMed  Google Scholar 

  11. Jassem W, Fuggle SV, Rela M, Koo DD, Heaton ND: The role of mitochondria in ischemia/reperfusion injury. Transplantation 73: 493–499, 2002

    Article  PubMed  Google Scholar 

  12. Luft R: The development of mitochondrial medicine. Biochim Biophys Acta 1271: 1–6, 1995

    Google Scholar 

  13. Luft R: Luft's disease revisited. Severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control. Mt Sinai J Med 59: 140–145, 1992

    PubMed  Google Scholar 

  14. Holt IJ, Harding AE, Morgan-Hughes JA: Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331: 717–719, 1988

    Article  PubMed  Google Scholar 

  15. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ, Nikoskelainen EK: Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242: 1427–1430, 1988

    PubMed  Google Scholar 

  16. Chinnery PF, Turnbull DM: Epidemiology and treatment of mitochondrial disorders. Am J Med Genet 106: 94–101, 2001

    Article  PubMed  Google Scholar 

  17. DiMauro S, Schon EA: Mitochondrial DNA mutations in human disease. Am J Med Genet 106: 18–26, 2001

    Article  PubMed  Google Scholar 

  18. Rustin P, Munnich A, Rotig A: Succinate dehydrogenase and human diseases: New insights into a well-known enzyme. Eur J Hum Genet 10: 289–291, 2002

    Article  PubMed  Google Scholar 

  19. Zhang C, Bills M, Quigley A, Maxwell RJ, Linnane AW, Nagley P: Varied prevalence of age-associated mitochondrial DNA deletions in different species and tissues: A comparison between human and rat. Biochem Biophys Res Commun 230: 630–635, 1997

    Article  PubMed  Google Scholar 

  20. Beckman KB, Ames BN: Mitochondrial aging: Open questions. Ann NY Acad Sci 854: 118–127, 1998

    PubMed  Google Scholar 

  21. Manfredi G, Beal MF: The role of mitochondria in the pathogenesis of neurodegenerative diseases. Brain Pathol 10: 462–472, 2000

    PubMed  Google Scholar 

  22. Orth M, Schapira AH: Mitochondria and degenerative disorders. Am J Med Genet 106: 27–36, 2001

    Article  PubMed  Google Scholar 

  23. Wallace DC: A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found Symp 235: 247–263, 2001

    PubMed  Google Scholar 

  24. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, McKee AC, Beal MF, Graham BH, Wallace DC: Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23: 471–476, 1994

    Article  PubMed  Google Scholar 

  25. Wallace DC, Lott MT, Shoffner JM, Ballinger S: Mitochondrial DNA mutations in epilepsy and neurological disease. Epilepsia 35(suppl 1): S43–S50, 1994

    PubMed  Google Scholar 

  26. Bernardi P: The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochem. Biophys Acta 1275: 5–9, 1996

    PubMed  Google Scholar 

  27. Halestrap AP, McStay GP, Clarke SJ: The permeability transition pore complex: Another view. Biochimie 84: 153–166, 2002

    Article  PubMed  Google Scholar 

  28. Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B: The biochemistry of programmed cell death. FASEB J 9: 1277–1287, 1995

    PubMed  Google Scholar 

  29. Schewe T, Halangk W, Hiebsch C, Rapoport SM: A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. FEBS Lett 60: 149–152, 1975

    Article  PubMed  Google Scholar 

  30. Rapoport SM: Highlights in erythrocyte research. Biomed Biochim Acta 42: 5–10, 1983

    Google Scholar 

  31. Trumbeckaite S, Opalka JR, Neuhof C, Zierz S, Gellerich FN: Different sensitivity of rabbit heart and skeletal muscle to endotoxin-induced impairment of mitochondrial function. Eur J Biochem 268: 1422–1429, 2001

    Article  PubMed  Google Scholar 

  32. Gellerich FN, Trumbeckaite S, Hertel K, Zierz S, Muller-Werdan U, Werdan K, Redl H, Schlag G: Impaired energy metabolism in hearts of septic baboons: Diminished activities of Complex I and Complex II of the mitochondrial respiratory chain. Shock 11: 336–341, 1999

    PubMed  Google Scholar 

  33. Schumer W, Erve PR, Obernolte RP: Endotoxemic effect on cardiac and skeletal muscle mitochondria. Surg Gynecol Obstet 133: 433–436, 1971

    PubMed  Google Scholar 

  34. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M: Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223, 2002

    Article  PubMed  Google Scholar 

  35. Kudoh A, Kudoh E, Ishihara H, Matsuki A: ONO-5046, an elastase inhibitor, attenuates liver mitochondrial dysfunction after endotoxin. Crit Care Med 26: 138–141, 1998

    Article  PubMed  Google Scholar 

  36. Simonson SG, Welty-Wolf K, Huang YT, Griebel JA, Caplan MS, Fracica PJ, Piantadosi CA: Altered mitochondrial redox responses in gram negative septic shock in primates. Circ Shock 43: 34–43, 1994

    PubMed  Google Scholar 

  37. Bende S Jr, Bertok L, Bende S Sr: Protective effect of radio-detoxified endotoxin (Tolerin) on the ultrastructure of pancreas in experimental endotoxin shock of rats. Acta Chir Hung 33: 197–208, 1992

    PubMed  Google Scholar 

  38. Joshi MS, Crouser ED, Julian MW, Schanbacher BL, Bauer JA: Digital imaging analysis for the study of endotoxin-induced mitochondrial ultrastructure injury. Anal Cell Pathol 21: 41–48, 2000

    PubMed  Google Scholar 

  39. Maragos WF, Jakel RJ, Pang Z, Geddes JW: 6-Hydroxydopamine injections into the nigrostriatal pathway attenuate striatal malonate and 3-nitropropionic acid lesions. Exp Neurol 154: 637–644, 1998

    Article  PubMed  Google Scholar 

  40. Mithofer K, Sandy MS, Smith MT, Di Monte D: Mitochondrial poisons cause depletion of reduced glutathione in isolated hepatocytes. Arch Biochem Biophys 295: 132–136, 1992

    Article  PubMed  Google Scholar 

  41. Andrews PA, Albright KD: Mitochondrial defects in cis-diamminedichloroplatinum(II)-resistant human ovarian carcinoma cells. Cancer Res 52: 1895–1901, 1992

    PubMed  Google Scholar 

  42. Wu EY, Smith MT, Bellomo G, Di Monte D: Relationships between the mitochondrial transmembrane potential, ATP concentration, and cytotoxicity in isolated rat hepatocytes. Arch Biochem Biophys 282: 358–362, 1990

    Article  PubMed  Google Scholar 

  43. Gori Z, De TV, Pollera M, Bergamini E: Mitochondrial myopathy in rats fed with a diet containing beta-guanidine propionic acid, an inhibitor of creatine entry in muscle cells. Br J Exp Pathol 69: 639–650, 1988

    PubMed  Google Scholar 

  44. Opalka JR, Gellerich FN, Kling L, Muller-Beckmann B, Zierz S: Effect of the new matrix metalloproteinase inhibitor RO–28–2653 on mitochondrial function. Biochem Pharmacol 63: 725–732, 2002

    Article  PubMed  Google Scholar 

  45. Luft R, Landau BR: Mitochondrial medicine. J Intern Med 238: 405–421, 1995

    PubMed  Google Scholar 

  46. Larsson NG, Luft R: Revolution in mitochondrial medicine. FEBS Lett 455: 199–202, 1999

    Article  PubMed  Google Scholar 

  47. Morgan-Hughes JA, Hanna MG: Mitochondrial encephalomyopathies: The enigma of genotype vs. phenotype. Biochim Biophys Acta 1410: 125–145, 1999

    PubMed  Google Scholar 

  48. Hurko O, Johns DR, Rutledge SL, Stine OC, Peterson PL, Miller NR, Martens ME, Drachman DB, Brown RH, Lee CP: Heteroplasmy in chronic external ophthalmoplegia: Clinical and molecular observations. Pediatr Res 28: 542–548, 1990

    PubMed  Google Scholar 

  49. Moslemi AR, Melberg A, Holme E, Oldfors A: Autosomal dominant progressive external ophthalmoplegia: Distribution of multiple mitochondrial DNA deletions. Neurology 53: 79–84, 1999

    PubMed  Google Scholar 

  50. Mariotti C, Savarese N, Suomalainen A, Rimoldi M, Comi G, Prelle A, Antozzi C, Servidei S, Jarre L, DiDonato S: Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the A3243G mutation of mitochondrial DNA. J Neurol 242: 304–312, 1995

    Article  PubMed  Google Scholar 

  51. Schroeder R, Vielhaber S, Wiedemann FR, Kornblum C, Papassotiropoulos A, Broich P, Zierz S, Elger CE, Reichmann H, Seibel P, Klockgether T, Kunz WS: New insights into the metabolic consequences of large-scale mtDNA deletions: A quantitative analysis of biochemical, morphological, and genetic findings in human skeletal muscle. J Neuropathol Exp Neurol 59: 353–360, 2000

    PubMed  Google Scholar 

  52. Mazat JP, Letellier T, Bedes F, Malgat M, Korzeniewski B, Jouaville LS, Morkuniene R: Metabolic control analysis and threshold effect in oxidative phosphorylation: Implications for mitochondrial pathologies. Mol Cell Biochem 174: 143–148, 1997

    Article  PubMed  Google Scholar 

  53. Kacser H, Burns JA: Molecular democracy: Who shares the controls? Biochem Soc Trans 7: 1149–1160, 1979

    PubMed  Google Scholar 

  54. Kacser H: The control of enzyme systems in vivo: Elasticity analysis of the steady state. Biochem Soc Trans 11: 35–40, 1983

    PubMed  Google Scholar 

  55. Kacser H, Burns JA: The molecular basis of dominance. Genetics 97: 639–666, 1981

    PubMed  Google Scholar 

  56. Heinrich R, Rapoport TA: A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur J Biochem 42: 97–105, 1974

    Article  PubMed  Google Scholar 

  57. Heinrich R: Mathematical models of metabolic systems: General principles and control of glycolysis and membrane transport in erythrocytes. Biomed Biochim Acta 44: 913–927, 1985

    PubMed  Google Scholar 

  58. Groen AK, Wanders RA, Westerhoff HV, van der Meer R, Tager J: Quantitation of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257: 2754–2757, 1982

    PubMed  Google Scholar 

  59. Gellerich FN, Bohnensack R, Kunz W: Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP-and ADP-consuming enzymes. Biochim Biophys Acta 722: 381–391, 1983

    PubMed  Google Scholar 

  60. Gellerich FN, Kunz WS, Bohnensack R: Estimation of flux control coefficients from inhibitor titrations by non-linear regression. FEBS Lett 274: 167–170, 1990

    PubMed  Google Scholar 

  61. Kunz WS: Control of oxidative phosphorylation in skeletal muscle. Biochim Biophys Acta 1504: 12–19, 2001

    PubMed  Google Scholar 

  62. Chen Y, Wei YH, Loppnow H, Lochmüller H, Wussling M, Zierz S, Gellerich FN: Flux control of cytochrome oxidase in intact human muscle cells and in cybrids with common deletion. EBEC Short reports 12: 323, 2002

    Google Scholar 

  63. Wisniewski E, Kunz WS, Gellerich FN: Phosphate affects the distribution of flux control among the enzymes of oxidative phosphorylation in rat skeletal muscle mitochondria. J Biol Chem 268: 9343–9346, 1993

    PubMed  Google Scholar 

  64. Halangk W, Bohnensack R, Frank K, Kunz W: Effect of various substrates on mitochondrial and cellular energy state of intact spermatozoa. Biomed Biochim Acta 44: 411–420, 1985

    PubMed  Google Scholar 

  65. Bohnensack R, Halangk W: Control of respiration and of motility in ejaculated bull spermatozoa. Biochim Biophys Acta 850: 72–79, 1986

    PubMed  Google Scholar 

  66. Halangk W, Bohnensack R: Quantification of sperm motility by a turbidimetric assay. Correlation to cellular respiration. Biomed Biochim Acta 45: 331–341, 1986

    PubMed  Google Scholar 

  67. Brand MD: Top-down elasticity analysis and its application to energy metabolism in isolated mitochondria and intact cells. Mol Cell Biochem 184: 13–20, 1998

    Article  PubMed  Google Scholar 

  68. Brown GC, Cooper CE: In: Bioenergetics, A Practical Approach. IRL Press at Oxford University Press, Oxford/New York/Tokyo, 1995

    Google Scholar 

  69. Kammermeier H: Why do cells need phosphocreatine and a phosphocreatine shuttle. J Mol Cell Cardiol 19: 115–118, 1987

    PubMed  Google Scholar 

  70. Bank W, Chance B: An oxidative defect in metabolic myopathies: Diagnosis by noninvasive tissue oximetry. Ann Neurol 36: 830–837, 1994

    Article  PubMed  Google Scholar 

  71. Schulte-Mattler WJ, Müller T, Deschauer M, Gellerich FN, Iaizzoi PA, Zierz S: Increased metabolic fatigue is caused by some but not all mitochondrial mutations. Arch Neurol 60: 50–58, 2003

    PubMed  Google Scholar 

  72. Müller T, Deschauer M, Gellerich FN, Schulte-Mattler WJ, Zierz S: Near-infrared spectroscopy of mitochondrial function in skeletal muscle of patients with respiratory chain diseases. Eur J Med Res 5(suppl 1): 12, 2001

    Google Scholar 

  73. Iotti S, Frassineti C, Alderighi L, Sabatini A, Vacca A, Barbiroli B: In vivo assessment of free magnesium concentration in human brain by 31P MRS. A new calibration curve based on a mathematical algorithm. NMR Biomed 9: 24–32, 1996

    Article  PubMed  Google Scholar 

  74. Kemp GJ, Roberts N, Bimson WE, Bakran A, Frostick SP: Muscle oxygenation and ATP turnover when blood flow is impaired by vascular disease. Mol Biol Rep 29: 187–191, 2002

    Article  PubMed  Google Scholar 

  75. Zierz S, Meeβen S, Jerusalem F: Lactat-und Pyruvatblutspiegel in der Diagnostik mitochondrialer Myopathien. Nervenarzt 60: 545–548, 1989

    PubMed  Google Scholar 

  76. Fischer JC, Ruitenbeek W, Stadhouders AM, Trijbels JM, Sengers RC, Janssen AJ, Veerkamp JH: Investigation of mitochondrial metabolism in small human skeletal muscle biopsy specimens. Improvement of preparation procedure. Clin Chim Acta 145: 89–99, 1985

    Article  PubMed  Google Scholar 

  77. Scholte HR, Yu Y, Ross JD, Oosterkamp II, Boonman AM, Busch HF: Rapid isolation of muscle and heart mitochondria, the lability of oxidative phosphorylation and attempts to stabilize the process in vitro by taurine, carnitine and other compounds. Mol Cell Biochem 174: 61–66, 1997

    Article  PubMed  Google Scholar 

  78. Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A: Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228: 35–51, 1994

    Article  PubMed  Google Scholar 

  79. Rasmussen HN, Rasmussen UF: Small scale preparation of skeletal muscle mitochondria, criteria of integrity, and assays with reference to tissue function. Mol Cell Biochem 174: 55–60, 1997

    Article  PubMed  Google Scholar 

  80. Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL: Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys 372: 399–407, 1999

    Article  PubMed  Google Scholar 

  81. Lesnefsky EJ, Tandler B, Ye J, Slabe TJ, Turkaly J, Hoppel CL: Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. Am J Physiol 273: H1544–H1554, 1997

    PubMed  Google Scholar 

  82. Lombardi A, Damon M, Vincent A, Goglia F, Herpin P: Characterisation of oxidative phosphorylation in skeletal muscle mitochondria subpopulations in pig: A study using top-down elasticity analysis. FEBS Lett 475: 84–88, 2000

    Article  PubMed  Google Scholar 

  83. Gallitelli MF, Schultz M, Isenberg G, Rudolf F: Twitch-potentiation increases calcium in peripheral more than in central mitochondria of guinea-pig ventricular myocytes J. Physiol 518: 433–447, 1999

    Article  PubMed  Google Scholar 

  84. Kunz WS, Kuznetsov AV, Schulze W, Eichhorn K, Schild L, Striggow F, Bohnensack R, Neuhof S, Grasshoff H, Neumann HW, Gellerich FN: Functional characterization of mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers. Biochim Biophys Acta 1144: 46–53, 1993

    PubMed  Google Scholar 

  85. Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA: Mitochondrial respiratory parameters in cardiac tissue: A novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892: 191–196, 1987

    PubMed  Google Scholar 

  86. Haller T, Ortner M, Gnaiger E: A respirometer for investigating oxidative cell metabolism: Toward optimization of respiratory studies. Anal Biochem 218: 338–342, 1994

    Article  PubMed  Google Scholar 

  87. Sperl W, Skladal D, Gnaiger E, Wyss M, Mayr U, Hager J, Gellerich FN: High resolution respirometry of permeabilized skeletal muscle fibers in the diagnosis of neuromuscular disorders. Mol Cell Biochem 174: 71–78, 1997

    Article  PubMed  Google Scholar 

  88. Letellier T, Malgat M, Coquet M, Moretto B, Parrot-Roulaud F, Mazat JP: Mitochondrial myopathy studies on permeabilized muscle fibers. Pediatr Res 32: 17–22, 1992

    PubMed  Google Scholar 

  89. Gellerich FN, Trumbeckaite S, Opalka JR, Seppet E, Rasmussen HN, Neuhoff C, Zierz S: Function of the mitochondrial outer membrane as a diffusion barrier in health and diseases. Biochem Soc Trans 28: 164–169, 2000

    PubMed  Google Scholar 

  90. Gellerich F, Deschauer M, Chen Y, Müller T, Neudecker S, Zierz S: Mitochondrial respiratory rates and activities of respiratory chain complexes correlate linearly with heteroplasmy of deleted mtDNA without threshold and independently of deletion size. Biochim Biophys Acta 1556: 41–52, 2002

    PubMed  Google Scholar 

  91. Selivanov VA, Ichas F, Holmuhamedov EL, Jouaville LS, Evtodienko YV, Mazat JP: A model of mitochondrial Ca2+-induced Ca2+ release simulating the Ca2+ oscillations and spikes generated by mitochondria. Biophys Chem 72: 111–121, 1998

    Article  PubMed  Google Scholar 

  92. Poston JM: Biochemical effects of ischemia on isolated, perfused rat heart tissues. Arch Biochem Biophys 295: 35–41, 1992

    Article  PubMed  Google Scholar 

  93. Küster U, Bohnensack R, Kunz W: Control of oxidative phosphorylation by the extramitochondrial ATP/ADP ratio. Biochem Biophys Acta 440: 391–402, 1976

    PubMed  Google Scholar 

  94. Vandegaer KM, Jacobus WE: Evidence against direct transfer of the adenine nucleotides by the heart mitochondrial creatine kinase-adenine nucleotide translocase complex. Biochem Biophys Res Commun 109: 442–448, 1982

    Article  PubMed  Google Scholar 

  95. Schild L, Gellerich FN: Effect of the extramitochondrial adenine nucleotide pool size on oxidative phosphorylation in isolated rat liver mitochondria. Eur J Biochem 252: 508–512, 1998

    Article  PubMed  Google Scholar 

  96. Gellerich FN, Schlame M, Bohnensack R, Kunz W: Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim Biophys Acta 890: 117–126, 1987

    PubMed  Google Scholar 

  97. Gellerich FN, Deschauer M, Chen Y, Müller T, Neudecker S, Zierz S: Functional impairment of mitochondria in skinned fibers of CPEOpatients with single and multiple deletions of mt-DNA correlate with heteroplasmy. Biochim Biophys Acta 1556: 41–52, 2002

    PubMed  Google Scholar 

  98. Laterveer FD, Nicolay K, Gellerich FN: Experimental evidence for dynamic compartmentation of ADP at the mitochondrial periphery: Coupling of mitochondrial adenylate kinase and mitochondrial hexokinase with oxidative phosphorylation under conditions mimicking the intracellular colloid osmotic pressure. Mol Cell Biochem 174: 43–51, 1997

    Article  PubMed  Google Scholar 

  99. Blachly-Dyson E, Forte M: VDAC channels. IUBMB Life 52: 113–118, 2001

    PubMed  Google Scholar 

  100. Gellerich FN, Laterveer FD, Zierz S, Nicolay K: The quantitation of ADP diffusion gradients across the outer membrane of heart mitochondria in the presence of macromolecules. Biochim Biophys Acta 1554: 48–56, 2002

    PubMed  Google Scholar 

  101. Brdiczka D: Contact sites between mitochondrial envelope membranes. Structure and function in energy-and protein-transfer. Biochim Biophys Acta 1071: 291–312, 1991

    PubMed  Google Scholar 

  102. Gellerich FN, Khuchua ZA, Kuznetsov AV: Influence of the mitochondrial outer membrane and the binding of creatine kinase to the mitochondrial inner membrane on the compartmentation of adenine nucleotides in the intermembrane space of rat heart mitochondria. Biochim Biophys Acta 1140: 327–334, 1993

    PubMed  Google Scholar 

  103. Jennings RB, Ganote CE, Reimer KA: Ischemic tissue injury. Am J Pathol 81: 179–198, 1975

    PubMed  Google Scholar 

  104. Jennings RB, Reimer KA: Lethal myocardial ischemic injury. Am J Pathol 102: 241–255, 1981

    PubMed  Google Scholar 

  105. Kay L, Daneshrad Z, Saks VA, Rossi A: Alteration in the control of mitochondrial respiration by outer mitochondrial membrane and creatine during heart preservation. Cardiovasc Res 34: 547–556, 1997

    Article  PubMed  Google Scholar 

  106. Trumbeckaite S: Der Nachweis akuter Störungen der Mitochondrienfunktion bei Sepsis, Ischämie und Reperfusion: Respirometrische Untersuchungen an permeabilisierten Muskelfasern. Thesis Martin-Luther-Universität Halle-Wittenberg, 2000

  107. Sorimachi Y, Harada K, Saido TC, Ono T, Kawashima S, Yoshida K: Downregulation of calpastatin in rat heart after brief ischemia and reperfusion. J Biochem (Tokyo) 122: 743–748, 1997

    Google Scholar 

  108. Suzuki K, Sorimachi H, Yoshizawa T, Kinbara K, Ishiura S: Calpain: Novel family members, activation, and physiologic function. Biol Chem Hoppe Seyler 376: 523–529, 1995

    PubMed  Google Scholar 

  109. Kohli V, Madden JF, Bentley RC, Clavien PA: Calpain mediates ischemic injury of the liver through modulation of apoptosis and necrosis. Gastroenterology 116: 168–178, 1999

    PubMed  Google Scholar 

  110. Aguilar HI, Botla R, Arora AS, Bronk SF, Gores GJ: Induction of the mitochondrial permeability transition by protease activity in rats: A mechanism of hepatocyte necrosis. EBEC Short Reports 110: 558–566, 1996

    Google Scholar 

  111. Gores GJ, Miyoshi H, Botla R, Aguilar HI, Bronk SF: Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: A potential role for mitochondrial proteases. Biochim Biophys Acta 1366: 167–175, 1998

    PubMed  Google Scholar 

  112. Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E: Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 80: 393–399, 1997

    PubMed  Google Scholar 

  113. Iwamoto H, Miura T, Okamura T, Shirakawa K, Iwatate M, Kawamura S, Tatsuno H, Ikeda Y, and Matsuzaki M: Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in ischemic/reperfused rat heart. J Cardiovasc Pharmacol 33: 580–586, 1999

    Article  PubMed  Google Scholar 

  114. Wang KK, Posmantur R, Nadimpalli R, Nath R, Mohan P, Nixon RA, Talanian RV, Keegan M, Herzog L, Allen H: Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 356: 187–196, 1998

    Article  PubMed  Google Scholar 

  115. Trumbeckaite S, Neuhof C, Zierz S, Gellerich FN: Calpain inhibitor (BSF 409425) diminishes ischemia-reperfusion-induced damage of rabbit heart mitochondria. Biochem Pharmacol 65: 911–916, 2003

    Article  PubMed  Google Scholar 

  116. Lubisch W, Moller A: Discovery of phenyl alanine derived ketoamides carrying benzoyl residues as novel calpain inhibitors. Bioorg Med Chem Lett 12: 1335–1338, 2002

    Article  PubMed  Google Scholar 

  117. Kay L, Rossi A, Saks V: Detection of early ischemic damage by analysis of mitochondrial function in skinned fibers. Mol Cell Biochem 174: 79–85, 1997

    PubMed  Google Scholar 

  118. Kaukonen J, Juselius JK, Tiranti V, Kyttala A, Zeviani M, Comi GP, Keranen S, Peltonen L, Suomalainen A: Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289: 782–785, 2000

    Article  PubMed  Google Scholar 

  119. Hirano M, Marti R, Ferreiro-Barros C, Vila MR, Tadesse S, Nishigaki Y, Nishino I, Vu TH: Defects of intergenomic communication: Autosomal disorders that cause multiple deletions and depletion of mitochondrial DNA. Semin Cell Dev Biol 12: 417–427, 2001

    Article  PubMed  Google Scholar 

  120. Crouser ED, Julian MW, Dorinsky PM: Ileal VO(2)-O(2) alterations induced by endotoxin correlate with severity of mitochondrial injury. Am J Respir Crit Care Med 160: 1347–1353, 1999

    PubMed  Google Scholar 

  121. Crouser ED, Julian MW, Weinstein DM, Fahy RJ, Bauer JA: Endotoxin-induced ileal mucosal injury and nitric oxide dysregulation are temporally dissociated. Am J Respir Crit Care Med 161: 1705–1712, 2000

    PubMed  Google Scholar 

  122. Gellerich FN, Trumbeckaite S, Opalka JR, Gellerich JF, Chen Y, Neuhof C, Redl H, Werdan K, Zierz S: Mitochondrial dysfunction in sepsis: Evidence from bacteraemic baboons and endotoxaemic rabbits. Biosci Rep 22: 99–113, 2002

    Article  PubMed  Google Scholar 

  123. Gellerich F, Hertel K, Trumbeckaite S, Kappen K, Neudecker S, Lindner A, Zierz S: Impaired energy metabolism in skeletal muscle of patients with critical illness neuropathy and myopathy: Investigation of mitochondrial function in skinned muscle fibers. J Neurol 245, 425. 1998

    Google Scholar 

  124. Ichas F, Jouaville LS, Mazat JP: Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89: 1145–1153, 1997

    Article  PubMed  Google Scholar 

  125. Wussling MH, Krannich K, Landgraf G, Herrmann-Frank A, Wiedenmann D, Gellerich FN, Podhaisky H: Sarcoplasmic reticulum vesicles embedded in agarose gel exhibit propagating calcium waves. FEBS Lett 463: 103–109, 1999

    Article  PubMed  Google Scholar 

  126. Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD: Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377: 438–441, 1995

    Article  PubMed  Google Scholar 

  127. Ichas F, Jouaville LS, Mazat JP: Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89: 1145–1153, 1997

    Article  PubMed  Google Scholar 

  128. Wasniewska M, Karczmarewicz E, Pronicki M, Piekutowska-Abramczuk D, Zablocki K, Popowska E, Pronicka E, Duszynski J: Abnormal calcium homeostasis in fibroblasts from patients with Leigh disease. Biochem Biophys Res Commun 283: 687–693, 2001

    Article  PubMed  Google Scholar 

  129. Löffler M, Jockel J, Schuster G, Becker C: Dihydroorotat-ubiquinone oxidoreductase links mitochondria in the biosynthesis of pyrimidine nucleotides. Mol Cell Biochem 174: 125–129, 1997

    Article  PubMed  Google Scholar 

  130. Knecht W, Löffler M: Inhibition and localization of human and rat dihydroorotate dehydrogenase. Adv Exp Med Biol 486: 267–270, 2000

    PubMed  Google Scholar 

  131. Rawls J, Knecht W, Diekert K, Lill R, Löffler M: Requirements for the mitochondrial import and localization of dihydroorotate dehydrogenase. Eur J Biochem 267: 2079–2087, 2000

    Article  PubMed  Google Scholar 

  132. Wallace DC: Diseases of the mitochondrial DNA. Ann Rev Biochem 61: 1175–1212, 1992

    Article  PubMed  Google Scholar 

  133. Wallace DC: Mitochondrial genetics: A paradigm for aging and degenerative diseases? Sciences 256: 128–133, 1993

    Google Scholar 

  134. Rossignol R, Malgat M, Mazat JP, Letellier T: Threshold effect and tissue specificity. Implication for mitochondrial cytopathies. J Biol Chem 274: 33426–33432, 1999

    Article  PubMed  Google Scholar 

  135. Skulachev VP: Mitochondria in the programmed death phenomena; a principle of biology: ‘it is better to die than to be wrong’. IUBMB Life 49: 365–373, 2000

    Article  PubMed  Google Scholar 

  136. Schultze M, Rost J, Augustin W, Gellerich F, Rapoport S: The oxidation of fatty acids by rabbit reticulocytes and their isolated mitochondria. Eur J Biochem 27: 43–47, 1972

    Article  PubMed  Google Scholar 

  137. Spengler V, Gellerich FN, Augustin W: Evaluation of a rapid fractionation procedure of rabbit reticulocytes after digitonin or hypotonic hemolysis for the study of enzyme and metabolite distributions. Acta Biol Med Ger 40: 973–977, 1981

    PubMed  Google Scholar 

  138. Schlame M, Gellerich FN, Augustin W: Localization of hexokinase in mitochondria from rabbit reticulocytes and its relation to mitochondrial ATP-formation studied by measurement of 32P-fluxes. Acta Biol Med Ger 40: 617–623, 1981

    PubMed  Google Scholar 

  139. Augustin W, Gellerich FN: Studies on the regulation of mitochondrial ATP formation in rabbit reticulocytes. EBEC Short Reports 40: 603–609, 1981

    Google Scholar 

  140. Gellerich FN, Laterveer FD, Zierz S, Nicolay K: The quantitation of ADP diffusion gradients across the outer membrane of heart mitochondria in the presence of macromolecules. Biochim Biophys Acta 1554: 48–56, 2002

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gellerich, F.N., Trumbeckaite, S., Müller, T. et al. Energetic depression caused by mitochondrial dysfunction. Mol Cell Biochem 256, 391–405 (2004). https://doi.org/10.1023/B:MCBI.0000009885.34498.e6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000009885.34498.e6

Navigation