Skip to main content
Log in

Compartmentation of energy metabolism in atrial myocardium of patients undergoing cardiac surgery

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The parameters of oxidative phosphorylation and its interaction with creatine kinase (CK)- and adenylate kinase (AK)-phosphotransfer networks in situ were studied in skinned atrial fibers from 59 patients undergoing coronary artery bypass surgery, valve replacement/correction and atrial septal defect correction. In atria, the mitochondrial CK and AK are effectively coupled to oxidative phosphorylation, the MM-CK is coupled to ATPases and there exists a direct transfer of adenine nucleotides between mitochondria and ATPases. Elimination of cytoplasmic ADP with exogenous pyruvate kinase was not associated with a blockade of the stimulatory effects of creatine and AMP on respiration, neither could it abolish the coupling of MM-CK to ATPases and direct transfer of adenine nucleotides. Thus, atrial energy metabolism is compartmentalized so that mitochondria form functional complexes with adjacent ATPases. These complexes isolate a part of cellular adenine nucleotides from their cytoplasmic pool for participating in energy transfer via CK- and AK-networks, and/or direct exchange. Compared to atria in sinus rhythm, the fibrillating atria were larger and exhibited increased succinate-dependent respiration relative to glutamate-dependent respiration and augmented proton leak. Thus, alterations in mitochondrial oxidative phosphorylation may contribute to pathogenesis of atrial fibrillation. (Mol Cell Biochem 270: 49–61, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova OYu, Kuznetsov AV: Metabolic compartmentation and substrate channeling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration – a synthesis. Mol Cell Biochem 133/134: 155–192, 1994

    Google Scholar 

  2. Weiss JN, Korge P: The cytoplasm: No longer a well-mixed bag. Circ Res 20: 108–110, 2001

    Google Scholar 

  3. Saks VA, Kuznetsov AV, Vendelin M, Guerrero K, Kay L, Seppet EK: Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism. Mol Cell Biochem 256/257: 185–199, 2004

    Google Scholar 

  4. Veksler VI, Kuznetsov AV, Anflous K, Mateo P, van Deursen J, Wieringa B, Ventura-Clapier R: Muscle creatine kinase deficient mice. 2. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function. J Biol Chem 270: 19921–19929, 1995

    Google Scholar 

  5. Kuznetsov AV, Tiivel T, Sikk P, Kaambre T, Kay L, Daneshrad Z, Rossi A, Kadsaja L, Peet N, Seppet E, Saks VA: Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo. Eur J Biochem 241: 909–915, 1996

    Google Scholar 

  6. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winköler K, Wiedemann F, Kunz WS: Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184: 81–100, 1998

    Google Scholar 

  7. Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M, Sahlin K, Saks VA: Functional complexes of mitochondria with Ca, MgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochim Biophys Acta 1504: 379–395, 2001

    Google Scholar 

  8. Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regiz-Zagrosek V, Fleck E, Seppet E: Intracellular energetic units in red muscle cells. Biochem J 356: 643–657, 2001

    Google Scholar 

  9. Braun U, Paju K, Eimre M, Seppet E, Orlova E, Kadaja L, Trumbeckaite S, Gellerich FN, Zierz S, Jockusch H, Seppet EK: Lack of dystrophin is associated with altered integration of the mitochondria and ATPases in slow-twitch muscle cells of MDX mice. Biochim Biophys Acta 1505: 258–270, 2001

    Google Scholar 

  10. Gellerich FN: The role of adenylate kinase in dynamic compartmentation of adenine nucleotides in mitochondrial intermembrane space. FEBS Lett 297: 55–58, 1992

    Google Scholar 

  11. Dzeja PP, Terzic A: Phosphotransfer networks and cellular energetics. J Exp Biol 206: 2039–2047, 2003

    Google Scholar 

  12. Dzeja P, Kalvenas A, Toleikis A, Praskevicius A: The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase. Biochem Int 10: 259–265, 1985

    Google Scholar 

  13. N’Guessan B, Zoll J, Ribera F, Ponsot E, Lampert E, Ventura-Clapier R, Veksler V, Mettauer B: Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles. Mol Cell Biochem 256/257: 267–280, 2004

    Google Scholar 

  14. Gellerich FN, Trumbeckaite S, Müller T, Deschauer M, Chen Y, Gizatullina Z, Zierz S: Energetic depression caused by mitochondrial dysfunction. Mol Cell Biochem 256/257: 391–405, 2004

    Google Scholar 

  15. Vannier C, Veksler V, Mekhfi H, Mateo P, Ventura-Clapier R: Functional tissue and developmental specificities of myofibrils and mitochondria in cardiac muscle. Can J Physiol Pharmacol 74: 23–31, 1995

    Google Scholar 

  16. Anflous K, Veksler V, Mateo P, Samson F, Saks V, Ventura-Clapier R: Mitochondrial creatine kinase isoform expression does not correlate with its mode of action. Biochem J 322: 73–78, 1997

    Google Scholar 

  17. Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M: Structure changes of atrial myocardium due to sustained fibrillation in the goat. Circulation 96: 3157–63, 1997

    Google Scholar 

  18. Ausma J, Litjens N, Lenders M-H, Duimel H, Mast F, Wouters L, Ramaekers F, Allessie M, Borgers M. Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat. J Mol Cell Cardiol 33: 2083–2094, 2001

    Google Scholar 

  19. Aimé-Sempé C, Folliguet T, Rücker-Martin C Krajewska M, Ktajewski S, Heimburger M, Aubier M, Mercadier J-J, Reed JC, Hatem SN: Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol 34: 1577–1586, 1999

    Article  CAS  PubMed  Google Scholar 

  20. Van Wagoner DR, Nerbonne JM: Molecular basis of electrical remodeling in atrial fibrillation. J Mol Cell Cardiol 32: 1101–1017, 2000

    Google Scholar 

  21. Manning WJ, Silverman DI, Katz SE, Riley MF, Doherty RM, Munson JT, Douglas PS: Temporal dependence of the return of atrial mechanical function on the mode of cardioversion of atrial fibrillation to sinus rhythm. Am J Cardiol 75: 624–626, 1995

    Google Scholar 

  22. Schotten U, Greiser M, Benke D, Buerkel K, Ehrenteidt B, Stellbrink C, Vazquez-Jimenez JF, Schoendube F, Hanrath P, Allessie M: Atrial fibrillation-induced atrial contractile dysfunction: A tachycardiomyopathy of a different sort. Cardiovasc Res 53: 192–201, 2002

    Google Scholar 

  23. Cha Y-M, Dzeja PP, Shen WK, Jahangir A, Hart CYT, Terzic A, Redfield MM: Failing atrial myocardium: Energetic deficits accompany structural remodeling and electrical instability. Am J Physiol 284: H1313–H1320, 2003

    Google Scholar 

  24. Tsuboi M, Hisatome I, Morisaki T, Tanaka M, Tomikura Y, Takeda S, Shimoyama M, Ohtahara A, Ogino K, Igawa O, Shigemasa C, Ohgi S, Nanba E: Mitochondrial DNA deletion associated with the reduction of adenine nucleotides in human atrium and atrial fibrillation. Eur J Clin Invest 31: 489–496, 2001

    Google Scholar 

  25. Ausma J, Coumans WA, Duimel H, Van der Vusse GJ, Allessie MA, Borgers M: Atrial high energy phosphate content and mitochondrial enzyme activity during chronic atrial fibrillation. Cardiovasc Res 47: 788–796, 2000

    Google Scholar 

  26. Lai LP, Tsai CC, Su MJ, Lin JL, Chen YS, Tseng YZ, Huang SKS: Atrial fibrillation is associated with accumulation of aging-related common type mitochondrial DNA deletion mutation in human atrial tissue. Chest 123: 539–544, 2003

    Google Scholar 

  27. Lin P-H, Lee S-H, Su C-P, Wei Y-H: Oxidative damage to mitochondrial DNA in atrial mscle of patients with atrial fibrillation. Free Rad Biol Med 10: 1310–1318, 2003

    Google Scholar 

  28. Tomikura Y, Hisatome I, Tsuboi M, Yamawaki M, Shimoyama M, Yamamoto Y, Sasaki N, Ogino K, Igawa O, Shigemasa C, Ishiguro S, Ohgi S, Nanba E, Shiota G, Morisaki H, Morisaki T, Kitakaze M: Coordinate induction of AMP deaminase in human atrium with mitochondrial DNA deletion. Biochem Biophys Res Commun 302: 372–376, 2003

    Google Scholar 

  29. Mihm MJ, Fushun Y, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR, Bauer JA: Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation 104: 174–180, 2001

    CAS  PubMed  Google Scholar 

  30. Weyman AE: Principles and practice of echocardiography. Second Edition, Lea & Febiger A Waverly Company, Philadelphia, Baltimore, Hong Kong, London, Munich, Sydney, Tokyo, 1994

    Google Scholar 

  31. Pozzolli M, Cioffi G, Traversi E, Pinna GD, Cobelli F, Tavazzi L: Predictors of primary atrial fibrillation and concomitant clinical and hemodynamic changes in patients with chronic heart failure: A prospective study in 344 patients with baseline sinus rhythm. J Am Coll Cardiol 32: 197–204, 1998

    Google Scholar 

  32. World Medical Association Declaration of Helsinki. Cardiovasc Res 35: 2–3, 1997

    Google Scholar 

  33. Seppet EK, Eimre M, Andrienko T, Kaambre T, Sikk P, Kuznetsov AV, Saks VA: Studies of mitochondrial respiration in muscle cells in situ: Use and misuse of experimental evidence in mathematical modeling. Mol Cell Biochem 256/257: 219–227, 2004

    Google Scholar 

  34. Vendelin M, Eimre M, Seppet E, Peet N, Andrienko T, Lemba M, Engelbrecht J, Seppet EK, Saks VA: Intracellular diffusion of adenine phosphates is locally restricted in cardiac muscle. Mol Cell Biochem 256/257: 229–241, 2004

    Google Scholar 

  35. Kay L, Nicolay K, Wieringa B, Saks V, Wallimann T: Direct evidence for the control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ. J Biol Chem 275: 6937–6944, 2000

    Google Scholar 

  36. Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R: Energetic crosstalk between organelles. Architectural interaction of energy production and utilization. Circ Res; 89: 153–159, 2001

    Google Scholar 

  37. Gellerich FN, Deschauer M, Chen Y, Müller T, Zierz S: Mitochondrial respiratory rates and activities of respiratory chain complexes correlate lineraly with heteroplasmy of deleted mtDNA without threshold and independently of deletion size. Biochim Biophys Acta 1556: 41–52, 2002

    Google Scholar 

  38. Andrienko T, Kuznetsov AV, Kaambre T, Usson Y, Orosco A, Appaix F, Tiivel T, Sikk P, Vendelin M, Margreiter R, Saks VA: Metabolic consequences of functional complexes of mitochondria, myofibrils and sarcoplasmic reticulum in muscle cells. J Exp Biol 206: 2059–2072, 2003

    Google Scholar 

  39. Rücker-Martin C, Pecker F, Godreau D, Hatem SN: Dedifferentiation of atrial myocytes during atrial fibrillation: Role of fibroblast proliferation in vitro. Cardiovasc Res 55: 38–52, 2002

    Google Scholar 

  40. Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks V, Pessina AC, Allen PD: Creatine kinase system in failing and nonfailing human myocardium. Circulation 94: 1894–1901, 1996

    Google Scholar 

  41. Kuznetsov AV, Kunz WS, Saks VA, Usson Y, Mazat J-P, Letellier T, Gellerich FN, Margreiter R: Cryopreservation of mitochondria and mitochondrial function in cardiac and skeletal muscle fibres. Anal Biochem 319: 296–303, 2003

    Google Scholar 

  42. Gellerich FN, Kapischke M, Kunz W, Neumann W, Kuznetsov A, Brdiczka D, Nicolay K. The influence of the cytosolic oncotic pressure on the permeability of the mitochondrial outer membrane for ADP: Implications for the kinetic properties of mitochondrial creatine kinase and for ADP channeling into the intermembrane space. Mol Cell Biochem 133/134: 85–104, 1994

    Google Scholar 

  43. Savabi F, Kirsch A: Alteration of the phosphocreatine energy shuttle components in diabetic rat heart. J Mol Cell Cardiol 23: 1323–1333, 1991

    Google Scholar 

  44. Bass A, Samanek M, Ostadal B, Hucin B, Stejsklova M: Different activities of energy metabolism enzymes in children cardiac atria and ventricles. Czech Med 13: 58–63, 1990

    Google Scholar 

  45. Morano I, Osterman A, Arner A: Rate of active tension development from rigor in skinned atrial and ventricular cardiac fibres from swine following photolytic release of ATP from caged ATP. Acta Physiol Scand 154: 343–353, 1995

    Google Scholar 

  46. Dzeja PP, Zeleznikar RJ, Goldberg ND: Adenylate kinase: Kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem; 184: 169–182, 1998

    Google Scholar 

  47. De Sousa E, Veksler V, Minajeva A, Kaasik A, Mateo P, Mayoux E, Hoerter J, Bigard X, Serrurier B, Ventura-Clapier R: Subcellular creatine kinase alterations. Implications in heart failure. Circ Res 85: 68–76, 1999

    Google Scholar 

  48. Dzeja PP, Vitkevicius KT, Redfield MM, Burnett JC, Terzic A: Adenylate kinase catalysed phosphotransfer in the myocardium: Increased contribution in heart failure. Circ Res 84: 1137–43, 1999

    Google Scholar 

  49. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI: Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol 281: E1340–E1346, 2001

    Google Scholar 

  50. Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GJ: AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energ deprivation. Proc Nat Acad Sci USA 9: 15983–15987, 2002

    Google Scholar 

  51. Tian R, Musi N, D’Agostino J, Hirshman MF, Goodyear LJ: Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure overload hypertrophy. Circulation 104: 1664–1669, 2001

    Google Scholar 

  52. Sadoshima J, Izumo S: Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: Potential involvement of and autpcrine/paracrine mechanism. EMBO J 12: 1681–1692, 1992

    Google Scholar 

  53. Liang F, Wu J, Garami M, Gardner DG: Mechanical strain increases expression of the brain natriuretic peptide gene in rat cardiac myocytes. J Biol Chem 272: 28050–28056, 1997

    Google Scholar 

  54. Liu J, Tian J, Haas M, Shapiro JI, Askari A, Xie Z: Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J Biol Chem 275: 27838–27844, 2000

    Google Scholar 

  55. Xie Z Kometiani, Liu J, Li J, Shapiro JI, Askari A: Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cadiac myocytes. J Biol Chem 274: 19323–19328, 1999

    Google Scholar 

  56. Oscai LB, Holloszy JO: Biochemical adaptation in muscle. II. Response of mitochondrial adenosine triphosphatase, creatine phosphokinase and adenylate kinase activities in skeletal muscle to exercise. J Biol Chem 246: 6968–6972, 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enn K. Seppet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seppet, E., Eimre, M., Peet, N. et al. Compartmentation of energy metabolism in atrial myocardium of patients undergoing cardiac surgery. Mol Cell Biochem 270, 49–61 (2005). https://doi.org/10.1007/s11010-005-3780-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-3780-y

Key words

Navigation