Skip to main content
Log in

Sensitive fluorescent imaging of Salmonella enteritidis and Salmonella typhimurium using a polyvalent directed peptide polymer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe three fluorescein-conjugated peptides generated by cell-phage display for use as a diagnostic probes for fluorescent detection and imaging of Salmonella enteritidis and Salmonella typhimurium. The authors also designed a polyvalent-directed peptide polymer synthesized with poly-D-lysine and bifunctional succinimidyl 3-(2-pyridyldithio)propionate with an affinity and sensitivity that is higher by more than an order of magnitude compared to single peptides due to multiple binding site interactions. In order to establish a diagnostic system for food poisoning, imaging analysis was performed using fluorescence microscopy. The limit of detection of the diagnostic system based on polyvalent directed peptide interaction is 102 colony-forming units per mL for Salmonella.

Schematic of a fluorescent method for detection and imaging of Salmonella enteritidis and Salmonella typhimurium by using a fluorescein labeled polyvalent-directed peptide polymer (PDPP) with a high affinity and sensitivity as a diagnostic probe. The system uses a microplate reader and was applied to the detection of food poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Velge P, Cloeckaert A, Barrow P (2005) Emergence of salmonella epidemics: the problems related to salmonella enterica serotype enteritidis and multiple antibiotic resistance in other major serotypes. Vet Res 36:267–288

    Article  CAS  Google Scholar 

  2. Duan N, Wu S, Chen X, Huang Y, Xia Y, Ma X, Wang Z (2013) Selection and characterization of aptamers against salmonella typhimurium using whole-bacterium systemic evolution of ligands by exponential entichment (SELEX). J Agric Food Chem 61:3229–3234

    Article  CAS  Google Scholar 

  3. Coburn B, Grassl GA, Finlay BB (2007) Salmonella, the host and disease: a brief review. Cell Biol 85:112–118

    Google Scholar 

  4. Bajpai VK, Baek KH, Kang SC (2012) Control of salmonella in foods by using essential oils: a review. Food Res Int 45:722–734

    Article  CAS  Google Scholar 

  5. Lee DY, Lee E, Min JE, Kim SH, Oh HB, Park MS (2011) Epidemic by salmonella I 4,[5],12:i:- and characteristics of isolates in korea. Infect Chemother 43:186–190

    Article  Google Scholar 

  6. Tindall BJ, Grimont PA, Garrity GM, Euzeby JP (2005) Nomenclature and taxonomy of the genus salmonella. Int J Syst Evol Microbiol 55:521–524

    Article  CAS  Google Scholar 

  7. Abubakar I, Irvine L, Aldus CF, Wyatt GM, Fordham R, Schelenz S, Shepstone L, Howe A, Peck M, Hunter PR (2007) A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technol Assess 11:1–216

    Article  CAS  Google Scholar 

  8. González-Escalona N, Brown EW, Zhang G (2012) Development and evaluation of a multiplex real-time pcr (qpcr) assay targeting ttrRSBCA locus and invA gene for accurate detection of salmonella spp. in fresh produce and eggs. Food Res Int 48:202–208

    Article  Google Scholar 

  9. Holt PS, Gast RK, Greene CR (1995) Rapid detection of salmonella enteritidis in pooled liquid egg samples using a magnetic bead-ELISA system. J Food Prot 58:967–972

    Article  Google Scholar 

  10. Kuang H, Wang W, Xu L, Ma W, Liu L, Wang L, Xu C (2013) Monoclonal antibody-based sandwich ELISA for the detection of staphylococcal enterotoxin a. Int J Environ Res Public Health 10:1598–1608

    Article  CAS  Google Scholar 

  11. Dong Y, Xu Y, Yong W, Chu X, Wang D (2014) Aptamer and its potential applications for food safety. Crit Rev Food Sci Nutr 54:1548–1561

    Article  CAS  Google Scholar 

  12. Singh AK, Senapati D, Wang S, Griffin J, Neely A, Candice P, Naylor KM, Varisli B, Kalluri JR, Ray PC (2009) Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy. ACS Nano 3:1906–1912

    Article  CAS  Google Scholar 

  13. Yang L, Li Y (2006) Simultaneous detection of Escherichia coli o157:h7 and salmonella typhimurium using quantum dots as fluorescence labels. Analyst 131:394–401

    Article  CAS  Google Scholar 

  14. Gao J, Li L, Ho PL, Mak GC, Gu H, Xu B (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv Mater 18:3145–3148

    Article  CAS  Google Scholar 

  15. Gu L, Elkin T, Jiang X, Li H, Lin Y, Qu L, Tzeng TR, Joseph R, Sun YP (2005) Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chem Commun 7:874–876

    Article  Google Scholar 

  16. Lee KM, Runyon M, Herrman TJ, Phillips R, Hsieh (2015) Review of salmonella detection and identification methods: aspects of rapid emergency response and food safety. J Food Control 47:264–276

  17. Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181:479–491

    Article  CAS  Google Scholar 

  18. Guo Y, Wang Y, Liu S, Yu J, Wang H, Liu X, Huang J (2017) Simultaneous voltammetric determination of E. coli and S. typhimurium based on target recycling amplification using self-assembled hairpin probes on a gold electrode. Microchimi Acta. Doi: 10.1007/s00604-016-2017-y

  19. Seker UOS, Demir HV (2011) Material binding peptides for nanotechnology. Molecules 16:1426–1451

    Article  CAS  Google Scholar 

  20. Ploss M, Facey SJ, Bruhn C, Zemel L, Hofmann K, Stark RW, Albert B, Hauer B (2014) Selection of peptides binding to metallic borides by screening M13 phage display libraries. BMC Biotechnol 14:12

    Article  Google Scholar 

  21. Wolcke J, Weinhold E (2001) A dna-binding peptide from a phage display library. Nucleosides Nucleotides Nucleic Acids 20:1239–1241

    Article  CAS  Google Scholar 

  22. Kim J, Park HY, Choi KJ, Jung H, Han SH, Lee JS, Park JS, Yoon MY (2006) Screening of peptides bound to anthrax protective antigen by phage display. J Microbiol Biotechnol 16:1784–1790

    CAS  Google Scholar 

  23. Even-Desrumeaux K, Chames P (2012) Phage display and selections on cells. Methods Mol Biol 907:225–235

    Article  CAS  Google Scholar 

  24. Carmona SJ, Sartor PA, Leguizamon MS, Campetella OE, Aguero F (2012) Diagnostic peptide discovery: prioritization of pathogen diagnostic markers using multiple features. PLoS One 7:e50748

    Article  CAS  Google Scholar 

  25. Kolovskaya OS, Savitskaya AG, Zamay TN, Reshetneva IT, Zamay GS, Erkaev EN, Wang X, Wehbe M, Salmina AB, Perianova OV, Zubkova OA, Spivak EA, Mezko VS, Glazyrin YE, Titova NM, Berezovski MV, Zamay AS (2013) Development of bacteriostatic dna aptamer for salmonella. J Med Chem 56:1564–1572

    Article  CAS  Google Scholar 

  26. Liu K, Yan X, Mao B, Wang S, Deng L (2016) Aptamer-based detection of salmonella enteritidis using double signal amplification by klenow fragment and dual fluorescence. Microchim Acta 183:643–649

    Article  CAS  Google Scholar 

  27. Park HY, Gedi V, Kim J, Park HC, Han SH, Yoon MY (2011) Ultrasensitive diagnosis for an anthrax-protective antigen based on a polyvalent directed peptide polymer coupled to zinc oxide nanorods. Adv Mater 23:5425–5429

    Article  CAS  Google Scholar 

  28. Singh A, Arutyunov D, Szymanski CM, Evoy S (2012) Bacteriophage based probes for pathogen detection. Analyst 137:3405–3421

    Article  CAS  Google Scholar 

  29. Gray BP, Brown KC (2014) Combinatorial peptide libraries: mining for cell-binding peptides. Chem Rev 114:1020–1081

    Article  CAS  Google Scholar 

  30. Varner CT, Rosen T, Martin JT, Kane RS (2015) Recent advance in engineering polyvalent biological interactions. Biomacromolecules 16:43–55

    Article  CAS  Google Scholar 

  31. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    Article  CAS  Google Scholar 

  32. Delibato E, Fiore A, Anniballi F, Auricchio B, Filetici E, Orefice L, Losio MN, Medici DD (2011) Comparison between two standardized cultural methods and 24 hour duplex sybr green real-time pcr assay for salmonella detection in meat samples. New Microbiol 34:299–306

    CAS  Google Scholar 

  33. Liu GF, Wang JY, Xu LW, Ding X, Zhou SN (2010) Sensitive and rapid detection of vibrio corallilyticus by loop-mediated isothermal amplification targeted to the alpha subunit gen of rna polymerase. Lett Appl Microbiol 51:301–307

    Article  CAS  Google Scholar 

  34. Shanmugasamy M, Velayutham T, Rajeswar J (2011) Inv a gene specific pcr for detection of salmonella from broilers. Veterinary World 4:562–564

    Article  Google Scholar 

  35. Schmidt R, Koberl M, Mostafa A, Ramadan EM, Monschein M, Jensen KB, Bauer R, Berg G (2014) Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front Microbiol 5:1–11. doi:10.3389/fmicb.2014.00064

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ907052) funded by the Rural Development Administration and a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 201500000001213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Young Yoon.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 8822 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SC., Kim, MS., Yoo, KC. et al. Sensitive fluorescent imaging of Salmonella enteritidis and Salmonella typhimurium using a polyvalent directed peptide polymer. Microchim Acta 184, 2611–2620 (2017). https://doi.org/10.1007/s00604-017-2240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2240-1

Keywords

Navigation