Skip to main content
Log in

Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the preparation of two kinds of metal-organic frameworks (MOFs), referred to as TMU-8 and TMU-9. The MOFs were applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III), and Mn(II) from aqueous solutions. The roles of the azine groups in TMU-8 (in comparison to TMU-9 which does not have an azine group) and the role of void spaces of these MOFs toward the adsorption of metal ions also are evaluated. The studies reveal that TMU-8 has a better adsorption capability than TMU-9. A magnetic TMU-8 was then fabricated by in-situ synthesis of a magnetic core-shell nanocomposite. The material was chosen as an efficient sorbent for the preconcentration of the above metal ions, followed by their determination by flow injection inductively coupled plasma atomic emission spectrometry. The assay was optimized using a combination of central composite design (CCD) and a Bayesian regularized artificial neural network (BRANN) technique. Under optimal conditions, the preconcentration factors are in the range between 66 and 232, and detection limits are as low as 0.3 to 1 μg ⋅L−1. The relative standard deviations are <6.4% (for n = 3; at 50 μg ⋅ L−1). Real samples were analyzed, and the results demonstrate that such core-shell magnetic microspheres are promising sorbents for rapid and efficient extraction of heavy metal ions from complex samples.

New magnetic metal organic frame works were synthesized and applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III) and Mn(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444-1-1230444-12. doi:10.1126/science.1230444

  2. Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23(2):249–267. doi:10.1002/adma.201002854

    Article  CAS  Google Scholar 

  3. Zhao Y, Seredych M, Zhong Q, Bandosz TJ (2013) Superior performancef of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature. ACS Appl Mater Interfaces 5(11):4951–4959. doi:10.1021/am4006989

    Article  CAS  Google Scholar 

  4. Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal–organic frameworks. Chem Rev 112(2):782–835. doi:10.1021/cr200274s

    Article  CAS  Google Scholar 

  5. Li J-R, Sculley J, Zhou H-C (2012) Metal–organic frameworks for separations. Chem Rev 112(2):869–932. doi:10.1021/cr200190s

    Article  CAS  Google Scholar 

  6. Cui X-Y, Gu Z-Y, Jiang D-Q, Li Y, Wang H-F, Yan X-P (2009) In situ hydrothermal growth of metal−organic framework films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem 81(23):9771–9777. doi:10.1021/ac901663x

    Article  CAS  Google Scholar 

  7. Trung TK, Trens P, Tanchoux N, Bourrelly S, Llewellyn PL, Loera-Serna S, Serre C, Loiseau T, Fajula F, Férey G (2008) Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al, Cr). J Am Chem Soc 130(50):16926–16932. doi:10.1021/ja8039579

    Article  CAS  Google Scholar 

  8. Tahmasebi E, Masoomi MY, Yamini Y, Morsali A (2015) Application of mechanosynthesized azine-decorated zinc(II) metal–organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study. Inorg Chem 54(2):425–433. doi:10.1021/ic5015384

    Article  CAS  Google Scholar 

  9. Gu Z-Y, Chen Y-J, Jiang J-Q, Yan X-P (2011) Metal-organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples. Chem Commun 47(16):4787–4789. doi:10.1039/C1CC10579E

    Article  CAS  Google Scholar 

  10. Gu Z-Y, Wang G, Yan X-P (2010) MOF-5 metal−organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde. Anal Chem 82(4):1365–1370. doi:10.1021/ac902450f

    Article  CAS  Google Scholar 

  11. Tuzen M, Soylak M (2009) Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. J Hazard Mater 162(2–3):724–729. doi:10.1016/j.jhazmat.2008.05.087

    Article  CAS  Google Scholar 

  12. Divrikli U, Kartal AA, Soylak M, Elci L (2007) Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. J Hazard Mater 145(3):459–464. doi:10.1016/j.jhazmat.2006.11.040

    Article  CAS  Google Scholar 

  13. Soylak M, Unsal YE, Kizil N, Aydin A (2010) Utilization of membrane filtration for preconcentration and determination of Cu(II) and Pb(II) in food, water and geological samples by atomic absorption spectrometry. Food Chem Toxicol 48(2):517–521. doi:10.1016/j.fct.2009.11.005

    Article  CAS  Google Scholar 

  14. Zhang N, Peng H, Wang S, Hu B (2011) Fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb in environmental and biological samples and their determination by ICP-MS. Microchim Acta 175(1):121–128. doi:10.1007/s00604-011-0659-3

    Article  Google Scholar 

  15. Zhang L, Chang X, Hu Z, Zhang L, Shi J, Gao R (2010) Selective solid phase extraction and preconcentration of mercury(II) from environmental and biological samples using nanometer silica functionalized by 2,6-pyridine dicarboxylic acid. Microchim Acta 168(1):79–85. doi:10.1007/s00604-009-0261-0

    Article  CAS  Google Scholar 

  16. Rocío-Bautista P, Martínez-Benito C, Pino V, Pasán J, Ayala JH, Ruiz-Pérez C, Afonso AM (2015) The metal–organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine. Talanta 139:13–20. doi:10.1016/j.talanta.2015.02.032

    Article  Google Scholar 

  17. Salarian M, Ghanbarpour A, Behbahani M, Bagheri S, Bagheri A (2014) A metal-organic framework sustained by a nanosized Ag12 cuboctahedral node for solid-phase extraction of ultra traces of lead(II) ions. Microchim Acta 181(9):999–1007. doi:10.1007/s00604-014-1200-2

    Article  CAS  Google Scholar 

  18. Bagheri H, Yamini Y, Safari M, Asiabi H, Karimi M, Heydari A (2016) Simultaneous determination of pyrethroids residues in fruit and vegetable samples via supercritical fluid extraction coupled with magnetic solid phase extraction followed by HPLC-UV. J Supercrit Fluids 107:571–580. doi:10.1016/j.supflu.2015.07.017

    Article  CAS  Google Scholar 

  19. Safari M, Yamini Y, Tahmasebi E, Ebrahimpour B (2016) Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Microchim Acta 183(1):203–210. doi:10.1007/s00604-015-1607-4

    Article  CAS  Google Scholar 

  20. Asgharinezhad AA, Mollazadeh N, Ebrahimzadeh H, Mirbabaei F, Shekari N (2014) Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for coextraction of acidic and basic drugs from biological fluids and waste water. J Chromatogr A 1338:1–8. doi:10.1016/j.chroma.2014.02.027

    Article  CAS  Google Scholar 

  21. Ricco R, Malfatti L, Takahashi M, Hill AJ, Falcaro P (2013) Applications of magnetic metal-organic framework composites. J Mater Chem A 1(42):13033–13045. doi:10.1039/C3TA13140H

    Article  CAS  Google Scholar 

  22. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933–969. doi:10.1021/cr200304e

    Article  CAS  Google Scholar 

  23. Faustini M, Kim J, Jeong G-Y, Kim JY, Moon HR, Ahn W-S, Kim D-P (2013) Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets. J Am Chem Soc 135(39):14619–14626. doi:10.1021/ja4039642

    Article  CAS  Google Scholar 

  24. Arai T, Sato T, Kanoh H, Kaneko K, Oguma K, Yanagisawa A (2008) Organic–inorganic hybrid polymer-encapsulated magnetic nanobead catalysts. Chem Eur J 14(3):882–885. doi:10.1002/chem.200701371

    Article  CAS  Google Scholar 

  25. Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann C, Evers F, Zacher D, Fischer RA, Wöll C (2007) Step-by-step route for the synthesis of metal−organic frameworks. J Am Chem Soc 129(49):15118–15119. doi:10.1021/ja076210u

    Article  CAS  Google Scholar 

  26. Jalali-Heravi M, Mani-Varnosfaderani A (2009) QSAR modeling of 1-(3,3-diphenylpropyl)-piperidinyl amides as CCR5 modulators using multivariate adaptive regression spline and bayesian regularized genetic neural networks. QSAR Comb Sci 28(9):946–958. doi:10.1002/qsar.200860136

    Article  CAS  Google Scholar 

  27. Burden FR (1999) Robust QSAR models using Bayesian regularized neural networks. J Med Chem 42(16):3183–3187. doi:10.1021/jm980697n

    Article  CAS  Google Scholar 

  28. Ciurtin DM, Dong Y-B, Smith MD, Barclay T, zur Loye H-C (2001) Two versatile N,N‘-bipyridine-type ligands for preparing organic−inorganic coordination polymers: New cobalt- and nickel-containing framework materials. Inorg Chem 40 (12):2825–2834. doi:10.1021/ic0014336

  29. Masoomi MY, Morsali A, Junk PC (2015) Rapid mechanochemical synthesis of two new Cd(II)-based metal-organic frameworks with high removal efficiency of Congo red. Cryst Eng Comm 17(3):686–692. doi:10.1039/C4CE01783H

    Article  CAS  Google Scholar 

  30. Ghorbani-Kalhor E (2016) A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd(II), Pb(II), and Ni(II). Microchim Acta 183(9):2639–2647. doi:10.1007/s00604-016-1896-2

    Article  CAS  Google Scholar 

  31. Moradi SE, Haji Shabani AM, Dadfarnia S, Emami S (2016) Sulfonated metal organic framework loaded on iron oxide nanoparticles as a new sorbent for the magnetic solid phase extraction of cadmium from environmental water samples. Anal Methods 8(33):6337–6346. doi:10.1039/C6AY01692H

    Article  CAS  Google Scholar 

  32. Wang Y, Chen H, Tang J, Ye G, Ge H, Hu X (2015) Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry. Food Chem 181:191–197. doi:10.1016/j.foodchem.2015.02.080

    Article  CAS  Google Scholar 

  33. Sohrabi MR, Matbouie Z, Asgharinezhad AA, Dehghani A (2013) Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim Acta 180(7):589–597. doi:10.1007/s00604-013-0952-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Yamini.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1071 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, M., Yamini, Y., Masoomi, M.Y. et al. Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES. Microchim Acta 184, 1555–1564 (2017). https://doi.org/10.1007/s00604-017-2133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2133-3

Keywords

Navigation