Skip to main content
Log in

Speciation analysis of thallium using electrothermal AAS following on-line pre-concentration in a microcolumn filled with multiwalled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The enrichment ability of carbon nanotubes (CNTs) was investigated and a new method established for the determination of trace thallium species in environmental samples using electrothermal atomization-atomic absorption spectrometry (ETAAS). The CNTs were employed as sorbent substrate in a continuous flow system coupled to ETAAS. Parameters influencing the recoveries of thallium were optimized. Under optimal conditions, the detection limit and precision of the method were 0.009 µg L−1 and 3.9%, respectively. The method was applied to the determination of thallium in real environmental samples and the recoveries were in the range from 96 to 100%. This system was able to separate thallium (I) from the matrix, which allowed its selective determination. The total thallium content was then determined by reducing Tl(III) with hydroxylamine. All these experimental results indicated that this new procedure can be applied to the determination of trace thallium in drinking water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kemper FH, Bertram HP (1991) Thallium. In: Merian E (ed) Metals and their compounds in the environment. Weinheim, Verlag Chemie, pp 1227–1241

    Google Scholar 

  2. Günter K, Kastenholz B (2005) Speciation of thallium. In: Cornelis R (ed) Handbook of elemental speciation II. Species in the environment, food, medicine and occupational health. Wiley, New York

    Google Scholar 

  3. Waidmann E, Hilpert K, Stoeppler M (1990) Thallium determination in reference materials by Isotope Dilution Mass Spectrometry (IDMS) using thermal ionization. Fresenius’ J Anal Chem 338:572

    Article  CAS  Google Scholar 

  4. Waidmann E, Stoeppler M, Heininger P (1992) Determination of thallium in sediments of the River Elbe using isotope dilution mass spectrometry with thermal ionization. Analyst 117:295

    Article  CAS  Google Scholar 

  5. Sager M (1986) Trece analysis of thallium. In: Hulpe H, Hartkamp H, Toelg G (eds) Analytical chemistry in practice. Georg Thieme Verlag, Stuttgart, pp 1–103

    Google Scholar 

  6. WHO (1996) Thallium. In: International Program on Chemical Safety, Environmental Health Criteria 182, Geneva

  7. Leloux MS, Lich NP, Claude JR (1987) Flame and graphite furnace atomic absorption spectroscopy methods for thallium—a review. At Spectrom 8:71

    CAS  Google Scholar 

  8. Manning DC, Slavin W (1988) The determination of thallium with the stabilized temperature platform furnace and Zeeman background correction. Spectrochim Acta Part B 43:1157

    Article  Google Scholar 

  9. Welz B, Sperling M (1999) Atomic absorption spectrometry (Third, completely revised edition). Wiley-VCH, Weinheim

    Google Scholar 

  10. Butcher DJ, Sneddon J (1998) A practical guide to graphite furnace atomic absorption spectrometry. In: Winefordner JD (ed) Chemical analysis: a series of monographs on analytical chemistry and its applications, vol 149. Wiley, New York, pp 215–225

    Google Scholar 

  11. Shan XQ, Ni ZM, Zhang L (1984) Application of matrix-modification in determination of thallium in waste water by graphite-furnace atomic-absorption spectrometry. Talanta 31:150

    Article  CAS  Google Scholar 

  12. Fuller CW (1976) The effect of acids on the determination of thallium by atomic absorption spectrometry with a graphite furnace. Anal Chim Acta 81:199

    Article  CAS  Google Scholar 

  13. Schmidt W, Dietl F (1983) Bestimmung von Thallium in Bodenaufschlüssen mit der flammenlosen Atomabsorption in Zirkonium-beschichteten Graphitrohren. Fresenius’ Z Anal Chem 315:687

    Article  CAS  Google Scholar 

  14. Schlemmer G, Radziuk B (1999) Analytical graphite furnace atomic absorption spectrometry. A laboratory guide. Birkhäuser Verlag, Berlin, pp 120–140

    Google Scholar 

  15. Riley JP, Siddiqui SA (1986) The determination of thallium in sediments and natural waters. Anal Chim Acta 181:117

    Article  CAS  Google Scholar 

  16. Tsakovski S, Ivanova E, Havezov I (1994) Flame AAS determination of thallium in soils. Talanta 41:721

    Article  CAS  Google Scholar 

  17. Ivanova E, Stoimenova M, Gentscheva G (1994) Flame AAS determination of As, Cd and Tl in soils and sediments after their simultaneous carbodithioate extraction. Fresenius’ J Anal Chem 348:317

    Article  CAS  Google Scholar 

  18. Cvetkovic J, Arpadjan S, Karadjova I, Stafilov T (2002) Determination of thallium in wine by electrothermal atomic absorption spectrometry after extraction preconcentration. Spectrochim Acta B 57:1101

    Article  Google Scholar 

  19. Silva AF, Borges DLG, Welz B, Goreti MRV, Silva MM, Klassen A, Heitmann U (2004) Method development for the determination of thallium in coal using solid sampling graphite furnace atomic absorption spectrometry with continuum source, high-resolution monochromator and CCD array detector. Spectrochim Acta B 59:841

    Article  Google Scholar 

  20. Kojuncu Ý, Bundalevska JM, Ay Ü, Čundeva K, Stafilov T, Akçin G (2004) Atomic absorption spectrometry determination of Cd, Cu, Fe, Ni, Pb, Zn, and Tl traces in seawater following flotation separation. Sep Sci Tech 39:2751

    Article  CAS  Google Scholar 

  21. Bundalevska JM, Koyuncu Ý, Ay Ü, Čundeva K, Akçin G, Stafilov T (2005) Separation of Tl(I) and Tl(III) from environmental water samples by flotation method coupled with Zeeman ETAAS determination. J Environ Sci Health A 40:1045

    Article  CAS  Google Scholar 

  22. Berndt H, Harms U, Sonneborn M (1985) Multielement-Spurenanreicherung aus Wässern an Aktivkohle zur Probenvorbereitung für die Atomspektroskopie (Flammen-AAS, ICP/OES). Fresenius’ Z Anal Chem 322:329

    Article  CAS  Google Scholar 

  23. Fang Z (1995) Flow injection atomic absorption spectrometry. Wiley, Chichester

    Google Scholar 

  24. Das AK, Dutta M, Cervera ML, de la Guardia M (2007) Determination of thallium in water samples. Microchem J 862:2

    Article  Google Scholar 

  25. Chicharro M, Sánchez A, Zapardiel A, Rubianes MD, Rivas G (2004) Capillary electrophoresis of neurotransmitters with amperometric detection at melanin-type polymer-modified carbon electrodes. Anal Chim Acta 523:185

    Article  CAS  Google Scholar 

  26. Sotiropoulou S, Chaniotakis NA (2003) Carbon nanotube array-based biosensor. Anal Bioanal Chem 375:103

    CAS  Google Scholar 

  27. Salimi A, Banks CE, Compton RG (2004) Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine. Analyst 129:225

    Article  CAS  Google Scholar 

  28. Arribas AS, Bermejo E, Chicharro M, Zapardiel A, Luque GL, Ferreira NF, Rivas G (2006) Analytical applications of a carbon nanotubes composite modified with copper microparticles as detector in flow systems. Anal Chim Acta 577:183

    Article  CAS  Google Scholar 

  29. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654

    Article  CAS  Google Scholar 

  30. Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058

    Article  CAS  Google Scholar 

  31. Liang P, Liu Y, Guo L, Zeng J, Lu H (2004) Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J Anal At Spectrom 19:1489

    Article  CAS  Google Scholar 

  32. Dong M, Ma Y, Zhao E, Qian C, Han E, Jiang S (2009) Using multiwalled carbon nanotubes as solid phase extraction adsorbents for determination of chloroacetanilide herbicides in water. Microchim Acta 165:123

    Article  CAS  Google Scholar 

  33. Gil RA, Goyanes SN, Polla G, Smichowski P, Olsina RA, Martinez LD (2007) Application of multi-walled carbon nanotubes as substrate for the on-line preconcentration, speciation and determination of vanadium by ETAAS. J Anal At Spectrom 22:1290

    Article  CAS  Google Scholar 

  34. Asadoulahi T, Dadfarnia S, Shabani AMH (2007) Determination of thallium traces by ETAAS after on-line matrix separation and preconcentration in a flow injection system. J Braz Chem Soc 18:1353–1359

    Article  CAS  Google Scholar 

  35. Prichard E, MacKay GM, Points J (1996) Trace analysis: a structures approach to obtaining reliable results. The Royal Society of Chemistry

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis D. Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil, R.A., Pacheco, P.H., Smichowski, P. et al. Speciation analysis of thallium using electrothermal AAS following on-line pre-concentration in a microcolumn filled with multiwalled carbon nanotubes. Microchim Acta 167, 187–193 (2009). https://doi.org/10.1007/s00604-009-0241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0241-4

Keywords

Navigation