Skip to main content
Log in

Effects of Spilled Oil on Bacterial Communities of Mediterranean Coastal Anoxic Sediments Chronically Subjected to Oil Hydrocarbon Contamination

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The effects of spilled oil on sedimentary bacterial communities were examined in situ at 20 m water depth in a Mediterranean coastal area. Sediment collected at an experimental site chronically subjected to hydrocarbon inputs was reworked into PVC cores with or without a massive addition of crude Arabian light oil (∼20 g kg−1 dry weight). Cores were reinserted into the sediment and incubated in situ at the sampling site (20 m water depth) for 135 and 503 days. The massive oil contamination induced significant shifts in the structure of the indigenous bacterial communities as shown by ribosomal intergenic spacer analysis (RISA). The vertical heterogeneity of the bacterial communities within the sediment was more pronounced in the oiled sediments particularly after 503 days of incubation. Response to oil of the deeper depth communities (8–10 cm) was slower than that of superficial depth communities (0–1 and 2–4 cm). Analysis of the oil composition by gas chromatography revealed a typical microbial alteration of n-alkanes during the experiment. Predominant RISA bands in oiled sediments were affiliated to hydrocarbonoclastic bacteria sequences. In particular, a 395-bp RISA band, which was the dominant band in all the oiled sediments for both incubation times, was closely related to hydrocarbonoclastic sulfate-reducing bacteria (SRB). These bacteria may have contributed to the main fingerprint changes and to the observed biodegradation of n-alkanes. This study provides useful information on bacterial dynamics in anoxic contaminated infralittoral sediments and highlights the need to assess more precisely the contribution of SRB to bioremediation in oil anoxic contaminated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aeckersberg, F, Bak, F, Widdel, F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156: 5–14

    Article  CAS  Google Scholar 

  2. Aller, RC (1982) The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall, PL, Tevesz, MJS (Eds.) Animal–Sediment Relations, Plenum, New York, pp 53–102

    Google Scholar 

  3. Aller, RC (1985) Effects of the marine deposit-feeders Heteromastus filiformis (Polychaeta), Macoma balthica (Bivalvia) and Tellina texana (Bivalvia), on averaged sedimentary solute transport, reaction rates, and microbial distributions. J Mar Res 43: 615–645

    CAS  Google Scholar 

  4. Altschul, S, Madden, T, Schaffer, A, Zhang, J, Zhang, Z, Miller, W, Lipman, D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    Article  PubMed  CAS  Google Scholar 

  5. Apitz, SE, Arias, E, Clawson, SA, Lin, EW, Melcher, RJ, Hemmingsen, BB (1999) The development of a sterile, PAH-spiked, aged marine sediment for biodegradation experiments: chemical results. Org Geochem 30: 891–900

    Article  CAS  Google Scholar 

  6. Bauer, JE, Capone, DG (1988) Effects of co-occurring aromatic hydrocarbons on degradation of individual aromatic hydrocarbons in marine sediments slurries. Appl Environ Microbiol 54: 1640–1655

    Google Scholar 

  7. Brown, MV, Schwalbach, MS, Hewson, I, Fuhrman, JA (2005) Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to time series. Environ Microbiol 7: 1466–1479

    Article  PubMed  CAS  Google Scholar 

  8. Burns, KA, Saliot, A (1986) Petroleum hydrocarbons in the Mediterranean Sea: a mass balance. Mar Chem 20: 141–157

    Article  CAS  Google Scholar 

  9. Burr, MD, Clark, SJ, Spear, CR, Camper, AK (2006) Denaturing gradient gel electrophoresis can rapidly display the bacterial diversity contained in 16S rDNA clone libraries. Microb Ecol 51: 479–486

    Article  PubMed  CAS  Google Scholar 

  10. Caldwell, ME, Garrett, RM, Prince, RC, Suflita, JM (1998) Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environ Sci Technol 32: 2191–2195

    Article  CAS  Google Scholar 

  11. Chakraborty, R, Coates, JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64: 437–446

    Article  PubMed  CAS  Google Scholar 

  12. Coates, JD, Anderson, RT (2000) Emerging techniques for anaerobic bioremediation of contaminated environments. Trends Biotechnol 18: 408–412

    Article  PubMed  CAS  Google Scholar 

  13. Coates, JD, Woodward, J, Allen, J, Philip, P, Lovley, DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63: 3589–3593

    PubMed  CAS  Google Scholar 

  14. Cravo-Laureau, C, Grossi, V, Raphel, D, Matheron, R, Hirschler-Rea, A (2005) Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Appl Environ Microbiol 71: 3458–3467

    Article  PubMed  CAS  Google Scholar 

  15. Cravo-Laureau, C, Matheron, R, Cayol, J-L, Joulian, C, Hirschler-Rea, A (2004) Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54: 77–83

    Article  PubMed  CAS  Google Scholar 

  16. Cuny, P, Miralles, G, Cornet-Barthaux, V, Acquaviva, M, Stora, G, Grossi, V, Gilbert, F (2006) Influence of bioturbation by the polychaete Nereis diversicolor on the structure of bacterial communities in oil contaminated coastal sediments. Mar Pollut Bull (in press)

  17. De Wit, R, Relexans, J-C, Bouvier, T, Moriarty, DJW (1997) Microbial respiration and diffusive oxygen uptake of deep-sea sediments in the Southern Ocean (ANTARES-I cruise). Deep Sea Res Part II Top Stud Oceanogr 44: 1053–1068

    Article  Google Scholar 

  18. Delille, D, Delille, B (2000) Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-Antartic intertidal sediments. Mar Environ Res 49: 403–417

    Article  PubMed  CAS  Google Scholar 

  19. Dyksterhouse, S, Gray, J, Herwig, R, Lara, J, Staley, J (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45: 116–123

    PubMed  CAS  Google Scholar 

  20. Gauthier, MJ, Lafay, B, Christen, R, Fernadez, L, Acquaviva, M, Bonin, P, Bertrand, J-C (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov. a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42: 568–576

    PubMed  CAS  Google Scholar 

  21. Gerino, M, Aller, RC, Lee, C, Cochran, JK, Aller, JY, Green, MA, Hirschberg, D (1998) Comparison of different tracers and methods used to quantify bioturbation during a spring bloom: 234-Thorium, luminophores and chlorophyll a. Estuar Coast Shelf Sci 46: 531–547

    Article  Google Scholar 

  22. Gerino, M, Stora, G, Durbec, J-P (1994) Quantitative estimation of biodiffusive and bioadvective sediment mixing: in situ experimental approach. Oceanol Acta 17: 547–554

    Google Scholar 

  23. Gilbert, F, Rivet, L, Bertrand, J-C (1994) The in vitro influence of the burrowing polychaete Nereis diversicolor on the fate of petroleum hydrocarbons in marine sediments. Chemosphere 29: 1–12

    Article  CAS  Google Scholar 

  24. Gilbert, F, Stora, G, Bertrand, J-C (1996) In situ bioturbation and hydrocarbon fate in an experimental contaminated Mediterranean coastal ecosystem. Chemosphere 33: 1449–1458

    Article  CAS  Google Scholar 

  25. Gilbert, F, Stora, G, Bonin, P, Le Dréau, Y, Mille, G, Bertrand, J-C (1997) Hydrocarbon influence on denitrification in bioturbated Mediterranean coastal sediments. Hydrobiologia 345: 67–77

    Article  CAS  Google Scholar 

  26. Golyshin, PN, Chernikova, TN, Abraham, WR, Lunsdorf, H, Timmis, KN, Yakimov, MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52: 901–911

    Article  PubMed  CAS  Google Scholar 

  27. Golyshin, PN, Martins Dos Santos, VAP, Kaiser, O, Ferrer, M, Sabirova, YS, Lunsdorf, H, Chernikova, TN, Golyshina, OV, Yakimov, MM, Puhler, A, Timmis, KN (2003) Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 106: 215–220

    Article  PubMed  CAS  Google Scholar 

  28. Gomez, F (2003) The role of the exchanges through the Strait of Gibraltar on the budget of elements in the Western Mediterranean Sea: consequences of human-induced modifications. Mar Pollut Bull 46: 685–694

    Article  PubMed  CAS  Google Scholar 

  29. Goñi-Urriza, M, de Montaudouin, X, Guyoneaud, R, Bachelet, G, de Wit, R (1999) Effect of macrofaunal bioturbation on bacterial distribution in marine sandy sediments, with special reference to sulphur-oxidising bacteria. J Sea Res 41: 269–279

    Article  Google Scholar 

  30. Goréguès, CM, Michotey, VD, Bonin, PC (2005) Molecular, biochemical, and physiological approaches for understanding the ecology of denitrification. Microb Ecol 49: 198–208

    Article  PubMed  CAS  Google Scholar 

  31. Grossi, V, Cuny, P, Caradec, S, Nérini, D, Pancost, R, Gilbert, F (2006) Impact of feeding by Arenicola marina (L.) and ageing of faecal material on fatty acid distribution and bacterial community structure in marine sediments: an experimental approach. J Exp Mar Biol Ecol (in press)

  32. Grossi, V, Massias, D, Stora, G, Bertrand, J-C (2002) Burial, exportation and degradation of acyclic petroleum hydrocarbons following a simulated oil spill in bioturbated Mediterranean coastal sediments. Chemosphere 48: 947–954

    Article  PubMed  CAS  Google Scholar 

  33. Harayama, S, Kishira, H, Kasai, Y, Syutsubo, K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1: 63–70

    PubMed  CAS  Google Scholar 

  34. Hayes, LA, Nevin, KP, Lovley, DR (1999) Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Org Geochem 30: 937–945

    Article  CAS  Google Scholar 

  35. Head, IM, Jones, DM, Roling, WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4: 173–182

    Article  PubMed  CAS  Google Scholar 

  36. Head, IM, Swannell, RP (1999) Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr Opin Biotechnol 10: 234–239

    Article  PubMed  CAS  Google Scholar 

  37. Hedlund, BP, Geiselbrecht, AD, Bair, TJ, Staley, JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65: 251–259

    PubMed  CAS  Google Scholar 

  38. Huber, PJ (1981) Robust Statistics. Wiley and Sons, Inc., New York

    Google Scholar 

  39. Jones, DM, Douglas, AG, Parkes, RJ, Taylor, J, Giger, W, Schaffner, C (1983) The recognition of biodegraded petroleum-derived aromatic hydrocarbons in recent marine sediments. Mar Pollut Bull 14: 103–108

    Article  CAS  Google Scholar 

  40. Jørgensen, BB (1982) Mineralization of organic matter in the sea bed—The role of sulfate reduction. Nature 377: 223–224

    Google Scholar 

  41. Kasai, Y, Kishira, H, Harayama, S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68: 5625–5633

    Article  PubMed  CAS  Google Scholar 

  42. Kasai, Y, Kishira, H, Sasaki, T, Syutsubo, K, Watanabe, K, Harayama, S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4: 141–147

    Article  PubMed  CAS  Google Scholar 

  43. Kasai, Y, Kishira, H, Syutsubo, K, Harayama, S (2001) Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3: 246–255

    Article  PubMed  CAS  Google Scholar 

  44. Kennicutt, II MC, Barker, C, Brooks, JM, DeFreitas, DA, Zhu, GH (1987) Selected organic matter source indicators in the Orinoco, Nile and Changjiang deltas. Org Geochem 11: 41–51

    Article  CAS  Google Scholar 

  45. Krzanowski, WJ (1987) Selection of variables to preserve multivariate data structure using principal components. Appl Stat 36: 22–33

    Article  Google Scholar 

  46. Le Dréau, Y, Gilbert, F, Doumenq, P, Asia, L, Bertrand, J-C, Mille, G (1997) The use of hopanes to track in situ variations in petroleum composition in surface sediments. Chemosphere 34: 1663–1672

    Article  Google Scholar 

  47. Le Dréau, Y, Jacquot, F, Doumenq, P, Guiliano, M, Bertrand, JC, Mille, G (1997) Hydrocarbon balance of a site which had been highly and chronically contaminated by petroleum wastes of a refinery (from 1956 to 1992). Mar Pollut Bull 34: 456–468

    Article  Google Scholar 

  48. Macnaughton, SJ, Stephen, JR, Venosa, AD, Davis, GA, Chang, YJ, White, DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65: 3566–3574

    PubMed  CAS  Google Scholar 

  49. Maidak, B, Cole, J, Parker, C, Jr, Garrity, G, Larsen, N, Li, B, Lilburn, T, McCaughey, M, Olsen, G, Overbeek, R, Pramanik, S, Schmidt, T, Tiedje, J, Woese, C (1999) A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27: 171–173

    Article  PubMed  CAS  Google Scholar 

  50. Margesin, R, Labbé, D, Schinner, F, Greer, CW, Whyte, LG (2003) Characterisation of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl Environ Microbiol 69: 3085–3092

    Article  PubMed  CAS  Google Scholar 

  51. Maruyama, A, Ishiwata, H, Kitamura, K, Sunamura, M, Fujita, T, Matsuo, M, Higashihara, T (2003) Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol 46: 442–453

    Article  PubMed  CAS  Google Scholar 

  52. Mayer, LM, Schick, LL, Self, RFL, Jumars, PA (1997) Digestive environments of benthic macroinvertebrate guts: enzymes, surfactants and dissolved organic matter. J Mar Res 55: 785–812

    Article  CAS  Google Scholar 

  53. Melcher, RJ, Apitz, SE, Hemmingsen, BB (2002) Impact of irradiance and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies. Appl Environ Microbiol 68: 2858–2868

    Article  PubMed  CAS  Google Scholar 

  54. Muschenheim, DK, Lee, K (2002) Removal of oil from the sea surface through particulate interactions: review and prospectus. Spill Sci Technol Bull 8: 9–18

    Article  CAS  Google Scholar 

  55. Normand, P, Ponsonnet, C, Nesme, X, Neyra, M, Simonet, P (1996) ITS analysis of prokaryotes. In: Akkermans, DL, van Elsas, JD, de Bruijn, EI (Eds.) Molecular Microbial Ecology Manual, Kluwer Academic Publishers, Amsterdam, The Netherlands, pp 1–12

    Google Scholar 

  56. O’Rourke, D, Conolly, S (2003) Just oil? The distribution of environmental and social impacts of oil production and consumption. Annu Rev Environ Resour 28: 587–617

    Article  Google Scholar 

  57. Ogino, A, Koshikawa, H, Nakahara, T, Uchiyama, H (2001) Succession of microbial communities during a biostimulation process as evaluated by DGGE and clone library analyses. J Appl Microbiol 91: 625–635

    Article  PubMed  CAS  Google Scholar 

  58. Papaspyrou, S, Gregersen, T, Kristensen, E, Christensen, B, Cox, RP (2006) Microbial reaction rates and bacterial communities in sediment surrounding burrows of two nereidid polychaetes (Nereis diversicolor and N. virens). Mar Biol 148: 541–550

    Article  CAS  Google Scholar 

  59. Payne, JR, Clayton, J, John R, Kirstein, BE (2003) Oil/suspended particulate material interactions and sedimentation. Spill Sci Technol Bull 8: 201–221

    Article  CAS  Google Scholar 

  60. Perriere, G, Gouy, M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochim 78: 364–369

    Article  CAS  Google Scholar 

  61. Rahman, KSM, Thahira-Rahman, J, Lakshmanaperumalsamy, P, Banat, IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85: 257–261

    Article  PubMed  CAS  Google Scholar 

  62. Revsbech, NP, Sørensen, J, Blackburn, H (1980) Distribution of oxygen in marine sediments measured with microelectrodes. Limnol Oceanogr 25: 403–411

    CAS  Google Scholar 

  63. Röling, WFM, Milner, MG, Jones, DM, Fratepietro, F, Swannell, RPJ, Daniel, F, Head, IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70: 2603–2613

    Article  PubMed  CAS  Google Scholar 

  64. Röling, WFM, Milner, MG, Jones, DM, Lee, K, Daniel, F, Swannell, RJP, Head, IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68: 5537–5548

    PubMed  Google Scholar 

  65. Saitou, N, Nei, M (1987) The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    PubMed  CAS  Google Scholar 

  66. Shen, L, Jaffé, R (2000) Interactions between dissolved petroleum hydrocarbons and pure and humic acid-coated mineral surfaces in artificial seawater. Mar Environ Res 49: 217–231

    Article  PubMed  CAS  Google Scholar 

  67. So, CM, Phelps, CD, Young, LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69: 3892–3900

    Article  PubMed  CAS  Google Scholar 

  68. So, CM, Young, LY (1999) Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01. Appl Environ Microbiol 65: 5532–5540

    PubMed  CAS  Google Scholar 

  69. So, CM, Young, LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65: 2969–2976

    PubMed  CAS  Google Scholar 

  70. Thompson, J, Higgins, D, Gibson, T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    Article  PubMed  CAS  Google Scholar 

  71. Ulses, C, Grenz, C, Marsaleix, P, Schaaff, E, Estournel, C, Meulé, S, Pinazo, C (2005) Circulation in a semi-enclosed bay under influence of strong freshwater input. J Mar Syst 56: 113–132

    Article  Google Scholar 

  72. Volkman, JK, Holdsworth, DG, Neill, GP, Bavor, Jr. HJ (1992) Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Sci Total Environ 112: 203–219

    Article  PubMed  CAS  Google Scholar 

  73. Yakimov, M, Golyshin, P, Lang, S, Moore, E, Abraham, W, Lunsdorf, H, Timmis, K (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48: 339–348

    Article  PubMed  CAS  Google Scholar 

  74. Yakimov, MM, Denaro, R, Genovese, M, Cappello, S, D’Auria, G, Chernikova, TN, Timmis, KN, Golyshin, PN, Giluliano, L (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7: 1426–1441

    Article  PubMed  CAS  Google Scholar 

  75. Yakimov, MM, Giuliano, L, Denaro, R, Crisafi, E, Chernikova, TN, Abraham, W-R, Luensdorf, H, Timmis, KN, Golyshin, PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54: 141–148

    Article  PubMed  CAS  Google Scholar 

  76. Yakimov, MM, Giuliano, L, Gentile, G, Crisafi, E, Chernikova, TN, Abraham, W-R, Lunsdorf, H, Timmis, KN, Golyshin, PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53: 779–785

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Georges Stora and Dr. Eric Duport for assistance with the luminophore technique. We would also like to thank Dr. Frederic Poitou from Signatures Society, and Laurence Asia for their help in hydrocarbons analyses, Dr. Christelle Goréguès for her skillful technical assistance with DGGE analysis and Elisabeth Brothier, Dr. Franck Poly, and Dr. Lionel Ranjard for their kind advice on the RISA technique. The authors are especially indebted to Michael Paul for careful reading of the English and Dr. Michèle Gilewicz for helpful comments on the paper. Last but not least, we are grateful to Dr. Vincent Grossi, Roland Graille, Frédéric Zuberer and Bernard De Ligondès for their essential work in the field.

This work was carried out in the framework of the program “GDR HYCAR no. 1123: Cycles biogéochimiques des hydrocarbures naturels et anthropiques en milieu marin,” and was supported by the Centre National de la Recherche Scientifique (CNRS) and Total company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Cuny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miralles, G., Nérini, D., Manté, C. et al. Effects of Spilled Oil on Bacterial Communities of Mediterranean Coastal Anoxic Sediments Chronically Subjected to Oil Hydrocarbon Contamination. Microb Ecol 54, 646–661 (2007). https://doi.org/10.1007/s00248-007-9221-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9221-6

Keywords

Navigation