Skip to main content

Advertisement

Log in

Winter–Summer Succession of Unicellular Eukaryotes in a Meso-eutrophic Coastal System

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The objective of this study was to explore the succession of planktonic unicellular eukaryotes by means of 18S rRNA gene tag pyrosequencing in the eastern English Channel (EEC) during the winter to summer transition. The 59 most representative (>0.1 %, representing altogether 95 % of total reads), unique operational taxonomic units (OTUs) from all samples belonged to 18 known high-level taxonomic groups and 1 unaffiliated clade. The five most abundant OTUs (69.2 % of total reads) belonged to Dinophyceae, Cercozoa, Haptophyceae, marine alveolate group I, and Fungi. Cluster and network analysis between samples distinguished the winter, the pre-bloom, the Phaeocystis globosa bloom and the post-bloom early summer conditions. The OTUs-based network revealed that P. globosa showed a relatively low number of connections—most of them negative—with all other OTUs. Fungi were linked to all major taxonomic groups, except Dinophyceae. Cercozoa mostly co-occurred with the Fungi, the Bacillariophyceae and several of the miscellaneous OTUs. This study provided a more detailed exploration into the planktonic succession pattern of the EEC due to its increased depth of taxonomic sampling over previous efforts based on classical monitoring observations. Data analysis implied that the food web concept in a coastal system based on predator–prey (e.g. grazer–phytoplankton) relationships is just a part of the ecological picture; and those organisms exploiting a variety of strategies, such as saprotrophy and parasitism, are persistent and abundant members of the community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Massana R, Castresana J, Balague V, Guillou L, Romari K, Groisillier A et al (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    Article  CAS  PubMed  Google Scholar 

  3. Slapeta J, Moreira D, Lopez-Garcia P (2005) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc Biol Sci 272:2073–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Massana R, Pedrós-Alió C (2008) Unveiling new microbial eukaryotes in the surface ocean. Curr Opin Microbiol 11:213–218

    Article  PubMed  Google Scholar 

  5. Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, Moorthi SD et al (2009) Defining DNA-based operational taxonomic units for microbial–eukaryote ecology. Appl Environ Microbiol 75:5797–5808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2010) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13:340–349

    Article  PubMed  Google Scholar 

  7. Medinger R, Nolte V, Pandey RV, Jost S, Ottenwalder B, Schlotterer C et al (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19(Suppl 1):32–40

    Article  PubMed Central  PubMed  Google Scholar 

  8. Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW et al (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(Suppl 1):21–31

    Article  CAS  PubMed  Google Scholar 

  9. Caron DA, Countway PD, Jones AC, Kim DY, Schnetzer A (2012) Marine protistan diversity. Ann Rev Mar Sci 4:467–493

    Article  PubMed  Google Scholar 

  10. Bittner L, Gobet A, Audic S, Romac S, Egge E, Santini S et al (2013) Diversity patterns of uncultured Haptophytes unraveled by pyrosequencing in Naples Bay. Mol Ecol 22:87–101

    Article  CAS  PubMed  Google Scholar 

  11. Gilbert JA, Field D, Swift P, Newbold L, Oliver A, Smyth T et al (2009) The seasonal structure of microbial communities in the Western English Channel. Environ Microbiol 11:3132–3139

    Article  CAS  PubMed  Google Scholar 

  12. Gilbert JA, Field D, Swift P, Thomas S, Cummings D, Temperton B et al (2010) The taxonomic and functional diversity of microbes at a temperate coastal site: a “multi-omic” study of seasonal and diel temporal variation. PLoS ONE 5:e15545. doi:10.1371/journal.pone.0015545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, Temperton B et al (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hugoni M, Taib N, Debroas D, Domaizon I, Dufournel IJ, Bronner G et al (2013) Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc Natl Acad Sci U S A 110:6004–6009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Nolte V, Pandey RV, Jost S, Medinger R, Ottenwälder B, Boenigk J et al (2010) Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity. Mol Ecol 19:2908–2915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mangot JF, Domaizon I, Taib N, Marouni N, Duffaud E, Bronner G et al (2013) Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ Microbiol 15:1745–1758

    Article  CAS  PubMed  Google Scholar 

  17. McDonald SM, Sarno D, Scanlan DJ, Zingone A (2007) Genetic diversity of eukaryotic ultraphytoplankton in the Gulf of Naples during an annual cycle. Aquat Microb Ecol 50:75–89

    Article  Google Scholar 

  18. Countway PD, Vigil PD, Schnetzer A, Moorthi SD, Caron DA (2010) Seasonal analysis of protistan community structure and diversity at the USC Microbial Observatory (San Pedro Channel, North Pacific Ocean). Limnol Oceanogr 55:2381–2396

    Article  Google Scholar 

  19. Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY et al (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425

    Article  PubMed Central  PubMed  Google Scholar 

  20. Prosser JI, Bohannan BJ, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP et al (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392

    Article  CAS  PubMed  Google Scholar 

  21. Konopka A (2009) What is microbial community ecology? ISME J 3:1223–1230

    Article  PubMed  Google Scholar 

  22. Azovsky A, Mazei Y (2013) Do microbes have macroecology? Large-scale patterns in the diversity and distribution of marine benthic ciliates. Glob Ecol Biogeogr 22:163–172

    Article  Google Scholar 

  23. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  24. Sime-Ngando T, Niquil N (2011) Editorial: ‘disregarded’ microbial diversity and ecological potentials in aquatic systems: a new paradigm shift ahead. Hydrobiologia 659:1–4

    Article  Google Scholar 

  25. Jobard M, Rasconi S, Sime-Ngando T (2010) Diversity and functions of microscopic fungi: a missing component in pelagic food webs. Aquat Sci 72:255–268

    Article  CAS  Google Scholar 

  26. Wurzbacher CM, Bärlocher F, Grossart HP (2010) Fungi in lake ecosystems. Aquat Microb Ecol 59:125–149

    Article  Google Scholar 

  27. Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R et al (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:3349–3365

    Article  CAS  PubMed  Google Scholar 

  28. Rasconi S, Jobard M, Sime-Ngando T (2011) Parasitic fungi of phytoplankton: ecological roles and implications for microbial food webs. Aquat Microb Ecol 62:123–137

    Article  Google Scholar 

  29. Schapira M, Vincent D, Gentilhomme V, Seuront L (2008) Temporal patterns of phytoplankton assemblages, size spectra and diversity during the wane of a Phaeocystis globosa spring bloom in hydrologically contrasted coastal waters. J Mar Biol Assoc U K 88:649–662

    Article  CAS  Google Scholar 

  30. Grattepanche J-D, Breton E, Brylinski J-M, Lecuyer E, Christaki U (2011) Succession of primary producers and micrograzers in a coastal ecosystem dominated by Phaeocystis globosa blooms. J Plankton Res 33:37–50

    Article  CAS  Google Scholar 

  31. Grattepanche J-D, Vincent D, Breton E, Christaki U (2011) Phytoplankton growth and microzooplankton grazing during a spring bloom in the eastern English Channel. J Exp Mar Biol Ecol 404:87–97

    Article  Google Scholar 

  32. Peperzak L, Colijn F, Gieskes WWC, Peeters JCH (1998) Development of the diatom–Phaeocystis spring bloom in the Dutch coastal zone in the North Sea: the silicon depletion versus the daily irradiance threshold hypothesis. J Plankton Res 20:517–537

    Article  Google Scholar 

  33. Jakobsen HH, Tang KW (2002) Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits. Aquat Microb Ecol 27:261–273

    Article  Google Scholar 

  34. Stelfox-Widdicombe CE, Archer SD, Burkill PH, Stefels J (2004) Microzooplankton grazing in Phaeocystis and diatom-dominated waters in the southern North Sea in spring. J Sea Res 51:37–51

    Article  Google Scholar 

  35. Brylinski J-M, Lagadeuc Y (1990) L’interface eau côtière/eau du large dans le Pas-de-Calais (côte française): zone frontale. CR Acad Sci Paris 311:535–540

    Google Scholar 

  36. Monchy S, Grattepanche JD, Breton E, Meloni D, Sanciu G, Chabe M et al (2012) Microplanktonic community structure in a coastal system relative to a Phaeocystis bloom inferred from morphological and tag pyrosequencing methods. PLoS ONE 7:e39924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Karakousis A, Tan L, Ellis D, Alexiou H, Wormald PJ (2006) An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR. J Microbiol Methods 65:38–48

    Article  CAS  PubMed  Google Scholar 

  38. Lopez-Garcia P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100:697–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Edgcomb V, Orsi W, Bunge J, Jeon S, Christen R, Leslin C et al (2011) Protistan microbial observatory in the Cariago Basin, Caribbean. I. Pyrosequencing vs. Sanger insights into species richness. ISME J 5:1344–1356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Article  Google Scholar 

  42. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM et al (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–641

    Article  CAS  PubMed  Google Scholar 

  45. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  46. Reeder J, Knight R (2009) The ‘rare biosphere’: a reality check. Nat Methods 6:636–637

    Article  CAS  PubMed  Google Scholar 

  47. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123

    Article  CAS  PubMed  Google Scholar 

  48. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  49. Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L et al (2013) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acid Res 41:597–604

    Article  Google Scholar 

  50. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. PRIMER-E, Plymouth

  53. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electr 4:9

    Google Scholar 

  54. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Magurran AE (2004) Measuring biological diversity. Blackwell, Malden

    Google Scholar 

  56. Chantangsi C, Leander BS (2010) An SSU rDNA barcoding approach to the diversity of marine interstitial cercozoans, including descriptions of four novel genera and nine novel species. Int J Syst Evol Microbiol 60:1962–1977

    Article  CAS  PubMed  Google Scholar 

  57. Hoppenrath M, Leander BS (2006) Dinoflagellate, Euglenid, or Cercomonad? The ultrastructure and molecular phylogenetic position of Protaspis grandis n. sp. J Eukaryot Microbiol 53:327–342

    Article  CAS  PubMed  Google Scholar 

  58. Tillmann U, Hesse K-J, Tillmann A (1999) Large-scale parasitic infection of diatoms in the Northfrisian Wadden Sea. J Sea Res 42:255–261

    Article  Google Scholar 

  59. Schnepf E, Kühn SF (2000) Food uptake and fine structure of Cryothecomonas longipes sp. nov., a marine nanoflagellate incertae sedis feeding phagotrophically on large diatoms. Helgol Mar Res 54:18–32

    Article  Google Scholar 

  60. Skovgaard A, Massana R, Balague V, Saiz E (2005) Phylogenetic position of the copepod-infesting parasite Syndinium turbo (Dinoflagellata, Syndinea). Protist 156:413–423

    Article  CAS  PubMed  Google Scholar 

  61. Harada A, Ohtsuka S, Horiguchi T (2007) Species of the parasitic genus Duboscquella are members of the enigmatic marine alveolate group I. Protist 158:337–347

    Article  CAS  PubMed  Google Scholar 

  62. Brâte J, Krabberød AK, Dolven JK, Ose RF, Kristensen T, Bjørklund KR et al (2012) Radiolaria associated with large diversity of marine alveolates. Protist 163:767–777

    Article  PubMed  Google Scholar 

  63. Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett. doi:10.1111/1574-6968.12087

    PubMed  Google Scholar 

  64. Gao Z, Johnson ZI, Wang G (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120

    Article  PubMed  Google Scholar 

  65. Kimura H, Naganuma T (2001) Thraustochytrids: a neglected agent of the marine microbial food chain. Aquat Ecosyst Health Manag 4:13–18

    Article  Google Scholar 

  66. Raghukumar S (2004) The role of fungi in marine detrital processes. In: Ramaiah NE (ed) Marine microbiology: facets & opportunities. National Institute of Oceanography, Goa, pp 91–101

    Google Scholar 

  67. Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ 165:155–164

    Article  CAS  Google Scholar 

  68. Damare VS, Damare S, Ramanujam P, Meena RM, Raghukumar S (2013) Preliminary studies on the association between zooplankton and the stramenopilan fungi, aplanochytrids. Microb Ecol. doi:10.1007/s00248-012-0149-0

    PubMed  Google Scholar 

  69. Hulvey J, Telle S, Nigrelli L, Lamour K, Thines M (2010) Salisapiliaceae—a new family of oomycetes from marsh grass litter of southeastern North America. Persoonia 25:109–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Lara E, Belbahri L (2011) SSU rRNA reveals major trends in oomycete evolution. Fungal Divers 49:93–100

    Article  Google Scholar 

  71. Grenville-Briggs L, Gachon CM, Strittmatter M, Sterck L, Kuepper FC, van West P (2011) A molecular insight into algal–oomycete warfare: cDNA analysis of Ectocarpus siliculosus infected with the basal oomycete Eurychasma dicksonii. PLoS ONE 6:e24500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Levine ND (1985) Phylum II. Apicomplexa. In: Lee JJ, Hutner SH, Bovee EC (eds) An illustrated guide to the Protozoa. Society of Protozoologists, Lawrence

  73. Sitjà-Bobadilla A, Palenzuela O, Alvarez-Pellitero P (1996) Light microscopic description of Eimeria sparis sp. nov. and Goussia sparis sp. nov. (Protozoa: Apicomplexa) from Sparus aurata L. (Pisces: Teleostei). Parasitol Res 82:323–332

    Article  PubMed  Google Scholar 

  74. Fayer R, Trout J (2005) Zoonotic protists in the marine environment. In: Belkin S, Colwell R (eds) Oceans and health: pathogens in the marine environment. Springer, New York, pp 143–163

    Chapter  Google Scholar 

  75. Marshall WL, Celio G, McLaughlin DJ, Berbee ML (2008) Multiple isolations of a culturable, motile Ichthyosporean (Mesomycetozoa, Opisthokonta), Creolimax fragrantissima n. gen., n. sp., from marine invertebrate digestive tracts. Protist 159:415–433

    Article  CAS  PubMed  Google Scholar 

  76. Jøstensen J-P, Sperstad S, Johansen S, Landfald B (2002) Molecular–phylogenetic, structural and biochemical features of a cold-adapted, marine ichthyosporean near the animal–fungal divergence, described from in vitro cultures. Eur J Protist 38:93–104

    Article  Google Scholar 

  77. Jensen S, Bourne DG, Hovland M, Murrell JC (2012) High diversity of microplankton surrounds deep-water coral reef in the Norwegian Sea. FEMS Microbiol Ecol 82:75–89

    Article  CAS  PubMed  Google Scholar 

  78. Not F, Valentin K, Romari K, Lovejoy C, Massana R, Tobe K et al (2007) Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315:253–255

    Article  CAS  PubMed  Google Scholar 

  79. Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH et al (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717

    Article  CAS  PubMed  Google Scholar 

  80. Amaral-Zettler L, Artigas LF, Baross J, Bharathi L, Boetius A, Chandramohan D et al (2010) Life in the world’s oceans: diversity, distribution, and abundance. Wiley-Blackwell, Oxford, pp 223–245

    Google Scholar 

  81. Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA et al (2012) Unlocking the potential of metagenomics through replicated experimental design. Nat Biotech 30:513–520

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the INSU/CNRS/EC2CO-IMMERSE (EC2CO_2011), the ‘Nord-Pas de Calais’ Region and FRB-DEMO (FRB_2013), the ANR-ROME (ANR 12 BSV7 0019 02), the BQR-ULCO 2012 projects and the SOMLIT network. We are grateful to Eric Lecuyer and JD Grattepanche for the sampling assistance. www.englisheditor.webs.com is acknowledged for the paper’s English proofing. Finally, we are grateful to four anonymous reviewers for their constructive comments, which improved our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urania Christaki.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christaki, U., Kormas, K.A., Genitsaris, S. et al. Winter–Summer Succession of Unicellular Eukaryotes in a Meso-eutrophic Coastal System. Microb Ecol 67, 13–23 (2014). https://doi.org/10.1007/s00248-013-0290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0290-4

Keywords

Navigation