Skip to main content
Log in

On mountain wave drag over complex terrain

  • Regional and Local Wind Systems Modelling Studies
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Mountain wave drag is calculated for rotating, stratified, nonhydrostatic Boussinesq flow over a mountain ridge using linear theory for a variety of mountain profiles representing complex/irregular terrain. The inclusion of a sinusoidal corrugation to the familiar witch-of-Agnesi profile creates a “stegosaurus” profile. The associated drag is greatly enhanced for mesoscale mountains when the corrugation wave-number matches that for the dominant inertia-gravity wave contribution to the cross-mountain surface pressure gradient. Similarly, increasing the jaggedness (by decreasing the exponentb) increases the drag for mesoscale mountains whose topographic spectral intensity,M(k), has the form of a power law:M(k)=mk −b wherek is the zonal wavenumber.

Spectral analysis of one-kilometer resolution topographic data for the Appalachian Mountains suggests that a power law profile withb=1.7 accurately represents the topographic spectral intensity and that it yields good estimates of the drag.

The application of these results to the parameterization of mountain wave drag in general circulation models is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacmeister, J. T., Pierrehumbert, R. T., 1988: On high-drag states of nonlinear stratified flow over an obstacle.J. Atmos. Sci.,45, 63–80.

    Google Scholar 

  • Blumen, W., 1965: A random model of momentum flux by moutain waves.Geophysica Norvegiva,26, 1–33.

    Google Scholar 

  • Bretherton, F. P., 1969): Momentum transport by gravity waves.Quart. J. Roy. Meteor. Soc.,95, 213–243.

    Google Scholar 

  • Gill, A. E., 1982:Atmospheric-Ocean Dynamics, New York: Academic Pres, 662pp.

    Google Scholar 

  • Godson, R. H., 1981: Digital Terrain Map of the United States, Map 1-1318.

  • Lilly, D. K., 1972: Wave momentum flux: A GARP problem.Bull. Amer. Meteor. Soc.,53, 17–23.

    Google Scholar 

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere.J. Atmos. Sci.,44, 1775–1800.

    Google Scholar 

  • Palmer, T. N., Shutts, G. J., Swinbank, R., 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization.Quart. J. Roy. Meteor. Soc.,112, 1001–1039.

    Google Scholar 

  • Pielke, R. A., Kennedy, E., 1980: Mesoscale terrain features. Rep. UVA-ENV SCI-MESO-1980-1, University of Virginia. [Available from R. Pielke, Dept. Atmos. Sci., Colorado 80523.]

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., 1986:Numerical Recipes. Cambridge: Cambridge University Press, 818 pp.

    Google Scholar 

  • Queney, P., 1948: The problem of air flow over mountains: A summary of theoretical studies.Bull. Amer. Meteor. Soc.,29, 16–26.

    Google Scholar 

  • Richard, E., Mascart, P., Nickerson, E. C., 1989: The role of surface friction in downslope windstorms.J. Appl. Meteor.,28, 241–251.

    Google Scholar 

  • Sawyer, J. S., 1959: The introduction of the effects of topography into methods of numerical forecasting.Quart. J. Roy. Meteor. Soc.,85, 31–43.

    Google Scholar 

  • Smith, R. B., 1979: The influence of the earth's rotation on mountain wave drag.J. Atmos. Sci.,36, 177–180.

    Google Scholar 

  • Smith, R. B., 1978: A measurement of moutain drag.J. Atmos. Sci.,35, 1644–1654.

    Google Scholar 

  • Young, G. S., Pielke, R. A., 1983: Application of terrain height variance spectra to mesoscale modeling.J. Atmos. Sci.,40, 2555–2560.

    Google Scholar 

  • Young, G. S., Pielke, R. A., Kessler, R. C., 1984: A comparison of the terrain height variance spectra of the front range with that of a hypothetical mountain.J. Atmos. Sci.,41, 1249–1250.

    Google Scholar 

  • Yuhas, J. A., 1989: On mountain wave drag over complex terrain. MS Thesis, The Pennyslvania State University, University Park, PA 16802, 78 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannon, P.R., Yuhas, J.A. On mountain wave drag over complex terrain. Meteorl. Atmos. Phys. 43, 155–162 (1990). https://doi.org/10.1007/BF01028118

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01028118

Keywords

Navigation