Skip to main content

Advertisement

Log in

Change of Young’s modulus of cold-deformed pure iron in a tensile test

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Changes in Young’s modulus E (determined according to ASTM E-111) of polycrystalline pure iron deformed by a tensile test at room temperature are determined. From its original mean value, 210 GPa, E decreased with deformation to a mean value of 196 GPa at ɛ=0.060. Thereafter, slight recovery occurred and E stabilized to 198 GPa until the appearance of neck (ɛ=0.100). With the aim to examine the causes of this behavior, residual stresses and textures were measured and the dislocation structure was observed by transmission electron microscopy (TEM). Longitudinal residual stresses increased from the first step of deformation (ɛ=0.015) and remained constant until the samples fractured. There was no significant difference in texture throughout the deformation process, during which the increment of α fiber was smooth. Thus, the decrease of E cannot be attributed to residual stresses or textures. A relationship between dislocation arrangement and decrease of E is proposed. Following the model established by Mott, dislocations can bow out in their glide planes, giving extra elastic strain and thus a decrease of E. The increase of the dislocation density during the first steps of deformation lowers the E values, since the extra elastic strain increases. At higher strains, when the cellular dislocation structure has formed (between ɛ=0.060 and 0.080), the dislocations in cell interiors are capable of giving an extra elastic strain, whereas the dislocations trapped in the cell walls are not. However, the dislocation density in cell interiors is lower than the dislocation density in the early stages of deformation in which the cell structure has not been developed. This produces the slight recovery of E measured at these strains. From ɛ=0.080, the values of E stabilized since no changes in dislocation density in cell interiors are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Papadakis: J. Testing Evaluation, 1998, vol. 26 (3), pp. 240–46.

    CAS  Google Scholar 

  2. K. Yamaguchi, H. Adachi, and N. Takakura: Met. and Mater., 1998, vol. 4, pp. 420–25.

    CAS  Google Scholar 

  3. F. Morestin and M. Boivin: Nucl. Eng. Design, 1996, vol. 162, pp. 107–16.

    Article  CAS  Google Scholar 

  4. H.M. Ledbetter and S.A. Kim: Mater. Sci. Eng. A, 1988, vol. 101, pp. 87–92.

    Article  CAS  Google Scholar 

  5. I. Fonseca, J.A. Benito, I. Mejía, J. Jorba, and A. Roca: Rev. Metall. Madrid, 2002, vol. 38 (4), pp. 249–55.

    CAS  Google Scholar 

  6. B.M. Drapkin, Y.P. Zamiatin, V.E. Vinogradov, and L.A. Zamiatina: Fiz. Khim. Obrab. Mater., 1988, vol. 4, pp. 127–31.

    Google Scholar 

  7. S. Shima and M. Yang: J. Soc. Mater. Sci. Jpn., 1995, vol. 44, pp. 578–83.

    CAS  Google Scholar 

  8. S.R. Agnew and J.R. Weertman: Mater. Sci. Eng. A, 1998, vol. 242, pp. 174–80.

    Article  Google Scholar 

  9. W. Böcker, H.J. Bunge, and T. Reinert: Mater. Sci. Forum, 1994, vols. 157–162, pp. 1551–58.

    Google Scholar 

  10. Y.I. Ragozin, Y.Y. Antonov, and V.N. Anziferov: Proc. Euromat ’2000, Elsevier Science Ltd., New York, NY, 2000, vol. 1, pp. 419–24.

    Google Scholar 

  11. N.F. Mott: Phil. Mag., 1952, vol. 43, pp. 1151–178.

    Google Scholar 

  12. J. Friedel: Phil. Mag., 1953, vol. 44, pp. 444–48.

    CAS  Google Scholar 

  13. A.V. Granato and K. Lücke: J. Appl. Phys., 1956, vol. 27, p. 283.

    Google Scholar 

  14. G. Langford and M. Cohen: Trans. ASM, 1969, vol. 62, pp. 623–38.

    CAS  Google Scholar 

  15. Y. Lan, H.J. Klaar, and W. Dahl: Metall. Trans. A, 1992, vol. 23A, pp. 537–44.

    CAS  Google Scholar 

  16. P. Antoine, S. Vandeputte, and J.-B. Vogt, Iron Steel Inst. Jpn., 2005, vol. 45, pp. 399–404.

    CAS  Google Scholar 

  17. J.A. Benito, J. Jorba, and A. Roca: Mater. Sci. Forum, 2003, vols. 426–432, pp. 4435–40.

    Article  Google Scholar 

  18. J. Jorba, R. Pons, J.A. Benito, and A. Roca: Special Issue: J. Mater. Processing Technol., 2001, vol. 117 (3), Thermec’00—Proc. Int. Conf. on Processing and Manufacturing Advanced Materials, Las Vegas, NV, CDROM.

    Google Scholar 

  19. I. Mejía: Ph.D. Thesis, University of Barcelona, Barcelona, 2002.

    Google Scholar 

  20. I.C. Noyan and J.E. Cohen: Residual Stresses Measurement by Diffraction and Interpretation, Springer-Verlag, New York, NY, 1987, pp. 117–25.

    Google Scholar 

  21. J.S. Kallend, U.F. Kocks, A.D. Rollett, and H.R. Wenk: Mater. Sci. Eng. A, 1991, vol. 132, pp. 1–11.

    Article  Google Scholar 

  22. M.J. Cai and W.B. Lee: Mater. Sci. Forum, 1994, vols. 157–162, pp. 315–21.

    Google Scholar 

  23. M.T. Pérez-Prado, M.C. Cristina, O.A. Ruano, and G. González-Doncel: Mater. Sci. Eng. A, 1998, vol. 244, pp. 216–23.

    Article  Google Scholar 

  24. R.K. Ham: Phil. Mag., 1961, vol. 6, pp. 1183–84.

    Google Scholar 

  25. V.D. Scott and G. Love: Mater. Sci. Technol., 1987, vol. 3, pp. 600–08.

    Google Scholar 

  26. T. Sawai and M. Suzuki: Scripta Mater., 1990, vol. 24, pp. 2047–52.

    Article  Google Scholar 

  27. D.A. Korzekwa, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1984, vol. 15A, pp. 1221–28.

    CAS  Google Scholar 

  28. Y. Estrin, L.S. Toth, A. Molinari, and Y. Brechet: Acta Mater, 1998, vol. 46, pp. 5509–22.

    Article  CAS  Google Scholar 

  29. F.B. Prinz and A.S. Argon: Acta Mater, 1984, vol. 32, p. 1021.

    Article  CAS  Google Scholar 

  30. X.F. Fang and W. Dahl: Mater. Sci. Eng. A, 1995, vol. 203, pp. 36–45.

    Article  Google Scholar 

  31. Y. Lan, H.J. Klaar, and W. Dahl: Metall. Trans. A, 1992, vol. 23, pp. 545–49.

    Google Scholar 

  32. F. Petry and F. Pschenitzka: Mater. Sci. Eng., 1984, vol. 68, p. L7.

  33. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, New York, NY, 1988, pp. 201–03.

    Google Scholar 

  34. M.A. Meyers and K.K. Chawla: Mechanical Metallurgy, Prentice-Hall, Elmsford, NJ, 1984, p. 398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benito, J.A., Jorba, J., Manero, J.M. et al. Change of Young’s modulus of cold-deformed pure iron in a tensile test. Metall Mater Trans A 36, 3317–3324 (2005). https://doi.org/10.1007/s11661-005-0006-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0006-6

Keywords

Navigation